matlab 决策树 categorical,机器学习:如何构造一个简单的决策树

在写该算法时遇到一个问题:

构造决策树时,这两段代码虽然都可以成功运行,但是构造的结果却有些不同。

如果用第一种方式遍历每个分支,会导致每次从右侧分支开始遍历,即使把branc_dict调整为{'right':right_split,'left':left_split}

而使用第二种方式,则可以正常遍历(先遍历左分支,再遍历右分支),到目前为止还没发现是什么原因导致的,各位有知道的欢迎留言~

以下为代码过程:

读入数据

import pandas as pd

columns=['age', 'workclass', 'fnlwgt', 'education', 'education_num',

'marital_status', 'occupation', 'relationship', 'race', 'sex',

'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',

'high_income']

data=pd.read_table('./data/income.data',delimiter=',',names=columns)

data.head()

在开始构建决策树之前,我们需要把数据集中的分类型数据转换为数值型,pandas.Categorical方法可以把string型分类的column转换为Categorical Type,转换以后系统就会自动将该column中的类别映射为一个数字。

list=['workclass','education','marital_status', 'occupation',

'relationship', 'race', 'sex', 'native_country','high_income']

for name in list:

col=pd.Categorical.from_array(data[name])

data[name]=col.codes

data.head()

计算熵和信息增益:

信息增益

def calc_entropy(target):

counts=np.bincount(target)

probabilities=counts/len(target)

entropys=probabilities*np.log2(probabilities)

return -sum(entropys)

def calc_information_gain(data,split_name,target):

entropy=calc_entropy(data[target])

median=np.median(data[split_name])

left_split=data[data[split_name]<=median]

right_split=data[data[split_name]>median]

to_subtract=0

for subset in [left_split,right_split]:

prob=subset.shape[0]/data.shape[0]

to_subtract+=prob*calc_entropy(subset[target])

return entropy-to_subtract

#通过计算每一个column的信息增益,获得最佳分裂属性(信息增益最大的)

def find_best_column(data,columns,target):

information_gains=[]

for name in columns:

information_gains.append(calc_information_gain(data,name,'high_income'))

information_index=information_gains.index(max(information_gains))

best_column=columns[information_index]

return best_column

带有存储功能的ID3算法:

为了实现存储功能,可以使用一个含有以下关键字的dictionary存储节点:

left/right 关键字表示左右结点

column 最佳分裂属性

median 分裂属性的中位数

number 结点编号

label

如果结点为叶节点,则仅仅含有label(值为0/1)和number关键字

伪代码如下:

def id3(data, target, columns, tree)

1 Create a node for the tree

2 Number the node

3 If all of the values of the target attribute are 1, assign 1 to the label key in tree

4 If all of the values of the target attribute are 0, assign 0 to the label key in tree

5 Using information gain, find A, the column that splits the data best

6 Find the median value in column A

7 Assign the column and median keys in tree

8 Split A into values less than or equal to the median (0), and values above the median (1)

9 For each possible value (0 or 1), vi, of A,

10 Add a new tree branch below Root that corresponds to rows of data where A = vi

11 Let Examples(vi) be the subset of examples that have the value vi for A

12 Create a new key with the name corresponding to the side of the split (0=left, 1=right). The value of this key should be an empty dictionary.

13 Below this new branch, add the subtree id3(data[A==vi], target, columns, tree[split_side])

14 Return Root

实现代码:

tree={}

nodes=[] #重点注意:因为在递归中使用int型不能自增,所以采取使用数组的方法。

def id3(data,columns,target,tree):

nodes.append(len(nodes)+1)

tree['number']=nodes[-1]

unique_targets=pd.unique(data[target])

if len(unique_targets)==1:

tree['label']=unique_targets[0]

return #不要忘记返回

#如unique长度不为1,既包含0又含1,需要分裂:

best_column=find_best_column(data,columns,target)

median=np.median(data[best_column])

tree['column']=best_column #分裂key

tree['median']=median #median key

left_split=data[data[best_column]<=median]

right_split=data[data[best_column]>median]

branch_dict={'left':left_split,'right':right_split}

for branch in branch_dict:

tree[branch]={}

id3(branch_dict[branch],columns,target,tree[branch])

id3(data, ["age", "marital_status"],"high_income", tree)

print(tree)

结果为

为了方便观察决策树的构造结果,我们可以写一个结点输出函数,结构化的输出生成的决策树:

def print_with_depth(string,depth):

prefix=" "*depth

print("{0}{1}".format(prefix,string))

def print_node(tree,depth):

if 'label' in tree:

print_with_depth('Leaf label{0}'.format(tree['label']),depth)

return

print_with_depth('{0}>{1}'.format(tree['column'],tree['median']),depth)

branches = [tree["left"], tree["right"]]

for branch in branches:

print_node(branch,depth+1)

print_node(tree, 0 )

输出

实现预测功能:

#预测函数

def predict(tree,row):

if 'label' in tree:

return tree['label']

column=tree['column']

median=tree['median']

if row['columns']<=median:

return predict(tree['left'],row)

else:

return predict(tree['right'],row)

print(predict(tree, data.iloc[0]))

predictions=data.apply(lambda x:predict(tree,x),axis=1)

完。

你可能感兴趣的:(matlab,决策树,categorical)