- 每周编辑精选|RJUA-QA 医疗数据集上线、 3D 分子生成模型 ResGen 论文解析
HyperAI超神经
AIforscience
HyperAI超神经的新栏目来啦~每周一超神经编辑部会精选上一周更新在hyper.ai官网的内容(数据集、AI4S论文案例、百科词条)发布在这里。欢迎直接访问hyper.ai查看全部内容哦!1月15日-1月21日,hyper.ai官方网站更新速览:优质公共数据集:10个AI4S论文案例:2篇热门百科词条:10条访问官网:https://hyper.ai/公开数据集精选1.CrossDock2020
- NeRF算法论文解析与翻译
超爱吃小蛋糕的66
深度学习算法人工智能深度学习三维重建NeRF
文章目录说明摘要一、简介二、相关工作2.1基于神经网络的3D形状表示2.2视图合成和基于图像的渲染三、基于神经辐射场的场景表示四、基于辐射场的体渲染五、神经辐射场优化5.1位置编码5.2分层体积采样5.3实施细则和损失函数说明NeRF:将场景表示为用于视图合成的神经辐射场本文主要对NeRF论文进行翻译(黑色字体),同时对一些不理解的概念和算法进行相应批注(红色字体)了解NeRF之前需要了解一些关于
- NeRF算法原理总结概述
超爱吃小蛋糕的66
深度学习算法深度学习人工智能自动驾驶NeRF三维重建
简介本文旨在对NeRF算法进行总结。论文翻译见博客:《NeRF算法论文解析与翻译》参考链接:神经网络辐射场NeRF、实时NeRFBaking、有向距离场SDF、占用网络Occupancy、NeRF自动驾驶NeRF详解NeRF入门之体渲染(VolumeRendering)NeRF中的位置编码1.算法概述整体上NeRF干了这么一件事,输入一组静态场景的连续RGB图像和每帧图像对应的位姿,基于体渲染技术
- Neural Tangent Kernel 理解(一)原论文解读
Bagba
机器学习深度学习神经网络机器学习NTK
欢迎关注WX公众号,每周发布论文解析:PaperShare,点我关注NTK的理解系列暂定会从(一)论文解读,(二)kernelmethod基础知识,(三)神经网络表达能力,(四)GNN表达能力等方面去写。当然,可能有的部分会被拆开为多个小部分来写,毕竟每一个点拿出来都可以写本书了。(本人各个系列旨在让复杂概念通俗易懂,力求获得进一步理解)NeuralTangentKernel(NTK)理论由[1]
- 【Pytorch】学习记录分享11——GAN对抗生成网络
大江东去浪淘尽千古风流人物
DeepLearningpytorch学习生成对抗网络
PyTorchGAN对抗生成网络0.工程实现1.GAN对抗生成网络结构2.GAN构造损失函数(LOSS)3.GAN对抗生成网络核心逻辑3.1参数加载:3.2生成器:3.3判别器:0.工程实现原理解析:论文解析:GAN:GenerativeAdversarialNets1.GAN对抗生成网络结构2.GAN构造损失函数(LOSS)LOSS公式与含义:LOSS代码实现:importtorchfromto
- 从 YOLOv1 到 YOLO-NAS 的所有 YOLO 模型:论文解析
T1.Faker
深度学习YOLO目标检测
在计算机视觉的浩瀚领域,有一支耀眼的明星,她的名字传颂着革新与突破的传奇——YOLO(YouOnlyLookOnce)。回溯时光,走进这个引人注目的名字背后,我们仿佛穿越进一幅画卷,一幅展现创新魅力与技术风华的画卷。很久以前,CVPR2016是一个注定光芒万丈的时刻。在这个充满期待的舞台上,JosephRedmon为世界呈现了一种单阶段目标检测的奇迹,她名为YOLO。这并非仅是一个算法,更是一曲深
- 3D hand pose:MediaPipe Hands: On-device Real-time Hand Tracking
AIRV_Gao
论文笔记深度学习计算机视觉手势姿态估计
MediaPipeHands:On-deviceReal-timeHandTracking论文解析0.摘要1.Introduction2.框架2.1BlazePalmDetector2.2HandLandmarkModel3.DatasetandAnnotation4.Results5.MediaPipegraphforhandtracking6.手势识别的应用论文链接:https://arxiv
- MatchPyramid实现文本匹配
愤怒的可乐
NLP项目实战#文本匹配实战MatchPyramid
引言今天利用MatchPyramid实现文本匹配。原论文解析→点此←。MatchPyramid核心思想是计算两段文本间的匹配矩阵,把它当成一个图形利用多层卷积网络提取不同层级的交互模式。匹配矩阵是通过计算两段输入文本基本单元(比如字或词)之间相似度得到的,作者提出了三种相似度计算函数。我们的实现采用余弦相似度。整体结构如上图所示。使用了两层卷积网络;每层卷积网络接一个最大池化层;最后利用两个全连接
- Make Pixels Dance: High-Dynamic Video Generation论文解析
江小皮不皮
人工智能深度学习PixelDance文本生成视频计算机视觉动态视频生成
高动态视频生成的新进展MakePixelsDance:High-DynamicVideoGeneration高动态视频生成的新进展前言视频生成模式摘要论文十问实验数据集定量评估指标消融研究训练和推理技巧训练技术推理技术更多的应用MakePixelsDance:High-DynamicVideoGeneration高动态视频生成的新进展前言动态视频生成一直是人工智能领域的一个重要且富有挑战性的目标。
- 软考高级系统架构设计师论文真题分析系列之:论软件架构风格
最笨的羊羊
软考高级系统架构设计师考试软考高级系统架构设计师论文真题分析系列论软件架构风格
软考高级系统架构设计师论文真题分析系列之:论软件架构风格一、论软件架构风格二、论文解析三、详细介绍架构风格的模型和含义1.数据流风格2.调用/返回风格3.独立构件风格4.虚拟机风格5.仓库风格一、论软件架构风格软件架构风格是描述某一特定应用领域中系统组织方式的惯用方式,定义一个系统家族,即一个体系结构定义一个词汇表和一组约束。**词汇表中包含一些构件和连接件类型,而这组约束指出系统是如何将这些构件
- 车道线检测:LSTR论文解析
AIRV_Gao
论文笔记车道线检测Transformers
车道线检测:End-to-endLaneShapePredictionwithTransformers论文解析1.Abstract2.Introduction3.RelatedWork4.Method4.1车道形状模型(LaneShapeModel)曲线的重新参数化4.2匈牙利拟合损失(HungarianFittingLoss)4.3网络结构4.3.1Backbone4.3.2Encoder4.3
- Zephyr-7B论文解析及全量训练、Lora训练
神洛华
LLMsllmnlp
文章目录一、Zephyr:DirectDistillationofLMAlignment1.1开发经过1.1.1Zephyr-7B-alpha1.1.2Zephyr-7B-beta1.2摘要1.3相关工作1.4算法1.4.1蒸馏监督微调(dSFT)1.4.2基于偏好的AI反馈(AIF)1.4.3直接蒸馏偏好优化(dDPO)1.4.4训练细节1.5实验二、alignment-handbook:低成本
- 【AlphaGo论文学习】Mastering the game of Go without human knowledge翻译及心得
PokiFighting
机器学习深度学习深度学习
原文地址:https://www.gwern.net/docs/reinforcement-learning/alphago/2017-silver.pdf参考的别人的学习解析:AlphaGoZero论文解析|蘑菇先生学习记更直接的论文翻译:【论文翻译】MasteringthegameofGowithouthumanknowledge(无师自通---在不借助人类知识的情况下学会围棋)_hwnbox
- STD-Trees: Spatio-temporal Deformable Trees for Multirotors Kinodynamic Planning (论文解析)
聪明小張
路径规划算法人工智能
STD-Trees:Spatio-temporalDeformableTreesforMultirotorsKinodynamicPlanning(论文解析)动态变形树树边表示轨迹树变形数值结果仿真结果一般的轨迹优化方案中仅考虑到空间约束、障碍物约束、动力学约束等,本文的轨迹运动设计方案增加时间维度的优化设计,提出动力学规划中的时空变形方法,使生成的轨迹更偏向于最优轨迹。提出以变形单元的形式对树进
- Fast R-CNN论文解析
小毛激励我好好学习
目标检测计算机视觉神经网络
文章目录一、介绍二、拟解决的关键问题三、FastR-CNN结构以及训练算法1.整体结构2.ROIPoolingLayer3.Pre-TrainedNetwork4.目标检测任务的微调5.尺度不变性四、总结五、参考文献本篇博客将要解析的论文是FastR-CNN,论文地址为:https://arxiv.org/abs/1504.08083一、介绍本文是RossGirshick于2015年发表的一篇文章
- 更快更准 | YOLOv3算法超详细解析(包括诞生背景+论文解析+技术原理等)
小哥谈
YOLO算法:基础+进阶+改进YOLO目标检测人工智能机器学习深度学习yolov3
前言:Hello大家好,我是小哥谈。YOLOv3是一种基于深度学习的目标检测算法,它可以快速而准确地在图像中检测出多个目标。它是由JosephRedmon和AliFarhadi在2018年提出的,是YOLO(YouOnlyLookOnce)系列算法的第三个版本。YOLOv3算法使用了Darknet-53网络作为其主干网络,并且采用了多尺度预测和多个尺度的边界框来提高检测效果。本篇文章就详细讲述一下
- 【阅读笔记】Federated Learning for Privacy-Preserving AI
HERODING77
联邦学习人工智能机器学习深度学习联邦学习PPFL
FederatedLearningforPrivacy-PreservingAI前言一、论文解析DefinitionCategorizationArchitectureApplicationExamplesUseCase1:FedRiskCtrlUseCase2:FedVisionOutlook二、论文总结三、个人感悟前言一篇来自CommunicationsofACM的文章,这类期刊相当于maga
- Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection(论文解析)
黄阳老师
目标检测人工智能计算机视觉
GroundingDINO:MarryingDINOwithGroundedPre-TrainingforOpen-SetObjectDetection:根据文字提示检测任意目标摘要1介绍2相关工作3.GroundingDINO3.1.特征提取和增强器3.2.语言引导的查询选择3.3.交叉模态解码器3.4.子句级别文本特征3.5.损失函数4实验4.1.设置4.2.Zero-ShotTransfer
- Detecting Everything in the Open World: Towards Universal Object Detection(论文解析)
黄阳老师
目标检测人工智能计算机视觉
DetectingEverythingintheOpenWorld:TowardsUniversalObjectDetection摘要1介绍2相关工作3准备工作4TheUniDetector框架4.1.异构标签空间训练4.2.开放世界推理5实验5.1.开放世界中的目标检测5.2.封闭世界中的目标检测5.3.广泛目标检测5.4开放词汇目标检测比较5.5.消融实验6结论摘要在本文中,我们正式探讨了通用
- Incremental Object Detection via Meta-Learning【论文解析】
黄阳老师
目标检测人工智能计算机视觉
IncrementalObjectDetectionviaMeta-Learning摘要1介绍2相关工作3方法3.1问题描述3.2元学习梯度预处理3.3增量式目标检测器摘要摘要:在真实世界的情境中,目标检测器可能会不断遇到来自新类别的物体实例。当现有的目标检测器应用于这种情景时,它们对旧类别的性能会显著下降。已经有一些努力来解决这个限制,它们都应用了知识蒸馏的变体来避免灾难性遗忘。然而,我们注意到
- 论文解析——Implementing Precise Interrupts in Pipelined Processors
KGback
#论文解析cpupipelineinterrupt
作者及发刊详情JamesE.SmithandAndrewR.Pleszkun.1988.ImplementingPreciseInterruptsinPipelinedProcessors.IEEETrans.Comput.37,5(May1988),562–573.https://doi.org/10.1109/12.4607摘要当一条指令执行结束另一条指令开始前,如果保存的进程状态和程序执行的
- [卷积神经网络]FasterNet论文解析
ViperL1
神经网络学习笔记1024程序员节
一、概述FasterNet是CVPR2023的文章,通过使用全新的部分卷积PConv,更高效的提取空间信息,同时削减冗余计算和内存访问,效果非常明显。相较于DWConv,PConv的速度更快且精度也非常高,识别精度基本等同于大型网络Swin-B,但是在GPU上可以提升36%的吞吐量。原文地址和代码地址如下:Run,Don'tWalk:ChasingHigherFLOPSforFasterNeura
- Segment Anything(论文解析)
黄阳老师
目标检测计算机视觉
SegmentAnything摘要1.介绍2SAM任务SAM模型摘要我们介绍了“SegmentAnything”(SA)项目:这是一个新的任务、模型和数据集对于图像分割。使用我们高效的模型进行数据收集,我们构建了迄今为止最大的分割数据集(远远超过其他数据集),其中包含了超过10亿个掩膜,覆盖了1100万张经过许可和尊重隐私的图像。该模型被设计和训练为可提示的,因此可以实现零次学习,适用于新的图像分
- Learning Open-World Object Proposals without Learning to Classify(论文解析)
黄阳老师
目标跟踪人工智能计算机视觉
LearningOpen-WorldObjectProposalswithoutLearningtoClassify摘要1介绍2相关工作3方法3.1基线3.2基于纯定位的对象性3.3.对象定位网络(OLN)4实验4.1跨类泛化4.2.开放世界类不可知检测4.3更多的跨数据集泛化4.3.1Objects365泛化4.3.2EpicKitchens的泛化4.4.对长尾目标检测的影响5结论摘要物体提议已
- 论文解析——一种面向Chiplet互连的高效传输协议设计与实现
KGback
#Chiplet#论文解析chipletD2D接口协议
作者及发刊详情熊国杰,张津铭,贺光辉.一种面向Chiplet互连的高效传输协议设计与实现[J].计算机工程与科学,2023,45(08):1339-1346.XIONGGuo-jie,ZHANGJin-ming,HEGuang-hui.DesignandimplementationofanefficienttransmissionprotocolforChipletinterconnection[
- 论文解析-基因序列编码算法DeepSEA
平平无奇科研小天才
论文人工智能深度学习
论文解析-DeepSEA参考亮点功能方法数据集来源数据实验评估评估DeepSEA预测染色质特征的性能评估DeepSEA在变异序列上的DHS预测性能数据集结果参考Zhou,J.,Troyanskaya,O.Predictingeffectsofnoncodingvariantswithdeeplearning–basedsequencemodel.NatMethods12,931–934(2015)
- 论文解析-moETM
平平无奇科研小天才
论文人工智能深度学习
论文解析-moETM参考亮点动机发展现状现存问题功能方法Encoder改进Decoder改进评价指标生物保守性批次效应移除实验设置结果多组学数据整合cell-topicmixture可解释性组学翻译性能评估RNA转录本、表面蛋白、染色质可及域调控关系研究1.验证同一主题下,topgene可以映射到topprotein过程结果2.跨主题验证gene-protein、peak-gene的调控关系过程结
- 论文解析——AMD EPYC和Ryzen处理器系列的开创性的chiplet技术和设计
KGback
#论文解析#ChipletchipletAMD
ISCA2021摘要本文详细解释了推动AMD使用chiplet技术的挑战,产品开发的技术方案,以及如何将chiplet技术从单处理器扩展到多个产品系列。正文这些年在将SoC划分成多个die方面有一系列研究,MCM的概念也在不断更新,AMD吸收了chiplet架构的理论并应用到实际的设计中。II.chiplets驱动力A.计算的强大需求B.摩尔定律正在解体C.大芯片难以挽救大型SoC的Die大小在不
- 论文解析——一种多核处理器直连接口QoS的设计与验证
KGback
#论文解析QoS接口协议
作者罗莉,周宏伟,周理,潘国腾,周海亮(@国防科技大学)刘彬(@武警贵州省总队)摘要多核处理器直接互连构建多路并行系统,一直是提高高性能计算机并行性的主要方式。主要研究多核处理器直连接口的QoS设计,通过直连接口完成跨芯片的cache一致性报文有效、可靠传输,实现共享主存的SMP系统。详细阐述了直连接口各个协议层的QoS设计的关键技术,基于UVM方法学构建了可重用验证平台,模拟验证了QoS设计的正
- iMAP——论文解析
gongyuandaye
深度学习slam深度学习NeRF
iMAP:ImplicitMappingandPositioninginReal-TimeiMAP是第一个提出用MLP作为场景表征的实时RGB-DSLAM。iMAP采用关键帧结构和多进程,通过动态信息引导的像素采样来提高速度,跟踪频率为10Hz,全局地图更新频率为2Hz。隐式MLP的优势在于高效的几何表示法和自动细节控制,以及对物体背面等未观察区域进行平滑、合理的填充。一、简介理想的3D表征应该具
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓