使用MH-05数据运行案例:mono_inertial_tum_vi.cc
./Examples/Monocular-Inertial/mono_inertial_euroc ./Vocabulary/ORBvoc.txt ./Examples/Monocular-Inertial/EuRoC.yaml /home/mol/study/SLAM/Datasets ./Examples/Monocular-Inertial/EuRoC_TimeStamps/MH05.txt
首先对代码进行详细的解读,并加注释:
/**
* This file is part of ORB-SLAM3
*
* Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
* Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
*
* ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ORB-SLAM3.
./Examples/Monocular-Inertial/mono_inertial_euroc ./Vocabulary/ORBvoc.txt ./Examples/Monocular-Inertial/EuRoC.yaml /home/mol/study/SLAM/Datasets ./Examples/Monocular-Inertial/EuRoC_TimeStamps/MH05.txt
可执行文件 。。。 相机参数 数据库 数据的时间戳
* If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "ImuTypes.h"
using namespace std;
//载入图像的函数,输入数据为图像路径strImagePath和时间戳路径strPathTimes,vstrImages存图像的文件路径,vTimeStamps存图像对应的时间戳
void LoadImages(const string &strImagePath, const string &strPathTimes,
vector<string> &vstrImages, vector<double> &vTimeStamps);
//载入IMU惯性数据的函数,输入为数据路径strImuPath,将时间戳存入vTimeStamps,vAcc存加速度,vGyro存角速度
void LoadIMU(const string &strImuPath, vector<double> &vTimeStamps, vector<cv::Point3f> &vAcc, vector<cv::Point3f> &vGyro);
double ttrack_tot = 0; //存储轨迹跟踪总时间
int main(int argc, char **argv)
{
const int num_seq = (argc-3)/2; //查看一共输入几组数据,前三个文件为必要文件,后面的是数据库和时间戳
cout << "num_seq = " << num_seq << endl;
bool bFileName= ((argc % 2) == 1);
string file_name;
if (bFileName)
file_name = string(argv[argc-1]);
cout << "file name: " << file_name << endl;
if(argc < 5)
{
cerr << endl << "Usage: ./mono_inertial_tum_vi path_to_vocabulary path_to_settings path_to_image_folder_1 path_to_times_file_1 path_to_imu_data_1 (path_to_image_folder_2 path_to_times_file_2 path_to_imu_data_2 ... path_to_image_folder_N path_to_times_file_N path_to_imu_data_N) (trajectory_file_name)" << endl;
return 1;
}
// Load all sequences:
int seq;
vector< vector<string> > vstrImageFilenames; //存图像的文件路径
vector< vector<double> > vTimestampsCam; //存图像对应的时间戳
vector< vector<cv::Point3f> > vAcc, vGyro; //存加速度和角速度
vector< vector<double> > vTimestampsImu; //存IMU对应的时间戳
vector<int> nImages; //存图像数量
vector<int> nImu; //存IMU数量
vector<int> first_imu(num_seq,0); //存第一个可用的IMU数据的位置,全部初始化为0
vstrImageFilenames.resize(num_seq);
vTimestampsCam.resize(num_seq);
vAcc.resize(num_seq);
vGyro.resize(num_seq);
vTimestampsImu.resize(num_seq);
nImages.resize(num_seq);
nImu.resize(num_seq);
int tot_images = 0; //图片总数
for (seq = 0; seq<num_seq; seq++)
{
cout << "Loading images for sequence " << seq << "...";
//获取图片路径
LoadImages(string(argv[3*(seq+1)]), string(argv[3*(seq+1)+1]), vstrImageFilenames[seq], vTimestampsCam[seq]);
cout << "LOADED!" << endl;
cout << "Loading IMU for sequence " << seq << "...";
//获取IMU数据
LoadIMU(string(argv[3*(seq+1)+2]), vTimestampsImu[seq], vAcc[seq], vGyro[seq]);
cout << "LOADED!" << endl;
//存入图片与IMU的数量
nImages[seq] = vstrImageFilenames[seq].size();
tot_images += nImages[seq];
nImu[seq] = vTimestampsImu[seq].size();
//
if((nImages[seq]<=0)||(nImu[seq]<=0))
{
cerr << "ERROR: Failed to load images or IMU for sequence" << seq << endl;
return 1;
}
// Find first imu to be considered, supposing imu measurements start first
//找到时间戳和图像第一个时间戳相等的IMU数据位置
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][0])
first_imu[seq]++;
first_imu[seq]--; // first imu measurement to be considered
}
// Vector for tracking time statistics
vector<float> vTimesTrack;
vTimesTrack.resize(tot_images);
cout << endl << "-------" << endl;
cout.precision(17); //定义输出字符多少
// Create SLAM system. It initializes all system threads and gets ready to process frames.
//定义模型,输入:Vocabulary词汇树,相机参数,SLAM系统(IMU和单目), , ,数据库路径
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_MONOCULAR, true, 0, file_name);
int proccIm = 0;
for (seq = 0; seq<num_seq; seq++)
{
// Main loop
cv::Mat im;
vector<ORB_SLAM3::IMU::Point> vImuMeas;
proccIm = 0;
//直方图均衡算法,对图像进行去雾。
//3.0是颜色对比度的阈值
//(8,8)是进行像素均衡化的网格大小,即在多少网格下进行直方图的均衡化操作
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(3.0, cv::Size(8, 8));
for(int ni=0; ni<nImages[seq]; ni++, proccIm++)
{
// Read image from file 获取灰度图
im = cv::imread(vstrImageFilenames[seq][ni],cv::IMREAD_GRAYSCALE);
// clahe处理im图像,并将处理后的数据存入im
clahe->apply(im,im);
double tframe = vTimestampsCam[seq][ni];
if(im.empty())
{
cerr << endl << "Failed to load image at: "
<< vstrImageFilenames[seq][ni] << endl;
return 1;
}
// Load imu measurements from previous frame
vImuMeas.clear();
//将之前时间的IMU存入vImuMeas中
if(ni>0)
{
while(vTimestampsImu[seq][first_imu[seq]]<=vTimestampsCam[seq][ni])
{
vImuMeas.push_back(ORB_SLAM3::IMU::Point(vAcc[seq][first_imu[seq]].x,vAcc[seq][first_imu[seq]].y,vAcc[seq][first_imu[seq]].z,
vGyro[seq][first_imu[seq]].x,vGyro[seq][first_imu[seq]].y,vGyro[seq][first_imu[seq]].z,
vTimestampsImu[seq][first_imu[seq]]));
first_imu[seq]++;
}
}
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif
// Pass the image to the SLAM system,向SLAM系统添加数据
SLAM.TrackMonocular(im,tframe,vImuMeas);
#ifdef COMPILEDWITHC11
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
#else
std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now();
#endif
//计算数据添加跟踪所消耗的时间
double ttrack= std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
ttrack_tot += ttrack; //累计总时间
vTimesTrack[ni]=ttrack; //储存时间
// Wait to load the next frame
double T=0;
if(ni<nImages[seq]-1)
T = vTimestampsCam[seq][ni+1]-tframe; //计算两帧之间的时间差
else if(ni>0)
T = tframe-vTimestampsCam[seq][ni-1];
if(ttrack<T) //等待下次数据传入
usleep((T-ttrack)*1e6);
}
if(seq < num_seq - 1)
{
cout << "Changing the dataset" << endl;
//更换数据库
SLAM.ChangeDataset();
}
}
// Stop all threads
SLAM.Shutdown();
// Save camera trajectory保存跟踪路径数据
if (bFileName)
{
const string kf_file = "kf_" + string(argv[argc-1]) + ".txt";
const string f_file = "f_" + string(argv[argc-1]) + ".txt";
SLAM.SaveTrajectoryEuRoC(f_file);
SLAM.SaveKeyFrameTrajectoryEuRoC(kf_file);
}
else
{
SLAM.SaveTrajectoryEuRoC("CameraTrajectory.txt");
SLAM.SaveKeyFrameTrajectoryEuRoC("KeyFrameTrajectory.txt");
}
sort(vTimesTrack.begin(),vTimesTrack.end());
float totaltime = 0;
for(int ni=0; ni<nImages[0]; ni++)
{
totaltime+=vTimesTrack[ni];
}
cout << "-------" << endl << endl;
cout << "median tracking time: " << vTimesTrack[nImages[0]/2] << endl;
cout << "mean tracking time: " << totaltime/proccIm << endl;
return 0;
}
void LoadImages(const string &strImagePath, const string &strPathTimes,
vector<string> &vstrImages, vector<double> &vTimeStamps)
{
ifstream fTimes;
cout << strImagePath << endl;
cout << strPathTimes << endl;
fTimes.open(strPathTimes.c_str());
vTimeStamps.reserve(5000);
vstrImages.reserve(5000);
while(!fTimes.eof())
{
string s;
getline(fTimes,s);
if(!s.empty())
{
stringstream ss;
ss << s;
//根据时间戳获取图片
vstrImages.push_back(strImagePath + "/" + ss.str() + ".png");
double t;
ss >> t;
vTimeStamps.push_back(t/1e9);
}
}
}
void LoadIMU(const string &strImuPath, vector<double> &vTimeStamps, vector<cv::Point3f> &vAcc, vector<cv::Point3f> &vGyro)
{
ifstream fImu;
fImu.open(strImuPath.c_str());
vTimeStamps.reserve(5000);
vAcc.reserve(5000);
vGyro.reserve(5000);
while(!fImu.eof())
{
string s;
getline(fImu,s);
if (s[0] == '#')
continue;
if(!s.empty())
{
string item;
size_t pos = 0;
double data[7]; //包括时间戳共7个数据
int count = 0;
while ((pos = s.find(',')) != string::npos) {
item = s.substr(0, pos);
data[count++] = stod(item); //将字符串转变为double类型
s.erase(0, pos + 1); //删除已经读取的数据和","
}
item = s.substr(0, pos); //只剩最后一个数据时,已经没有",",所以要手动添加。
data[6] = stod(item);
vTimeStamps.push_back(data[0]/1e9);
vAcc.push_back(cv::Point3f(data[4],data[5],data[6]));
vGyro.push_back(cv::Point3f(data[1],data[2],data[3]));
}
}
}
下面是SLAM初始化:
// argv[1]= path_to_vocabulary
// argv[2]= path_to_settings
// file_name = trajectory_file_name
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::MONOCULAR,true);
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_MONOCULAR, true, 0, file_name);
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::RGBD,true);
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::STEREO,true);
ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_STEREO, true, 0, file_name);
SLAM数据传入与跟踪
SLAM.TrackMonocular(im,tframe); // ORB_SLAM3::System::MONOCULAR
SLAM.TrackMonocular(im,tframe,vImuMeas); // ORB_SLAM3::System::IMU_MONOCULAR
SLAM.TrackStereo(imLeft,imRight,tframe); // ORB_SLAM3::System::STEREO
SLAM.TrackStereo(imLeft,imRight,tframe,vImuMeas); // ORB_SLAM3::System::IMU_STEREO
SLAM.TrackRGBD(imRGB,imD,tframe); // ORB_SLAM3::System::RGBD
不同的方案传入的数据也不一样: