微积分常用公式表

微分、导数和积分公式对照表

序号 微分公式 导数公式 积分公式
| 幂函数
1 d ( x μ ) = μ x μ − 1   d x \mathbf{d}(x^\mu)=\mu x^{\mu-1}\ \mathbf{d}x d(xμ)=μxμ1 dx ( x μ ) ′ = μ x μ − 1 (x^\mu)'=\mu x^{\mu-1} (xμ)=μxμ1 ∫ x μ d x = x μ + 1 μ + 1 + C \int x^\mu \mathbf{d}x=\cfrac{x^{\mu+1}}{\mu+1}+C xμdx=μ+1xμ+1+C
| 指数函数
2 d ( a x ) = a x ln ⁡ a   d x \mathbf{d}(a^x)=a^x \ln a\ \mathbf{d}x d(ax)=axlna dx ( a x ) ′ = a x ln ⁡ a (a^x)'=a^x \ln a (ax)=axlna ∫ a x d x = a x ln ⁡ a + C \int a^x\mathbf{d}x=\cfrac{a^x}{\ln a}+C axdx=lnaax+C
3 d ( e x ) = e x   d x \mathbf{d}(e^x)=e^x\ \mathbf{d}x d(ex)=ex dx ( e x ) ′ = e x (e^x)'=e^x (ex)=ex ∫ e x d x = e x + C \int e^x \mathbf{d}x=e^x+C exdx=ex+C
| 对数函数
4 d ( log ⁡ a x ) = 1 x ln ⁡ a d x \mathbf{d}(\log_ax)=\cfrac{1}{x\ln a}\mathbf{d}x d(logax)=xlna1dx ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_ax)'=\cfrac{1}{x\ln a} (logax)=xlna1
5 d ( ln ⁡ x ) = 1 x d x \mathbf{d}(\ln x)=\cfrac{1}{x}\mathbf{d}x d(lnx)=x1dx ( ln ⁡ x ) ′ = 1 x (\ln x)'=\cfrac{1}{x} (lnx)=x1 ∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int \cfrac{1}{x} \mathbf{d}x=\ln \vert x \vert+C x1dx=lnx+C
| 三角函数
6 d ( sin ⁡ x ) = cos ⁡ x   d x \mathbf{d}(\sin x)=\cos x\ \mathbf{d}x d(sinx)=cosx dx ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx ∫ cos ⁡ x d x = sin ⁡ x + C \int \cos x\mathbf{d}x=\sin x+C cosxdx=sinx+C
7 d ( cos ⁡ x ) = − sin ⁡ x   d x \mathbf{d}(\cos x)=-\sin x\ \mathbf{d}x d(cosx)=sinx dx ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx ∫ sin ⁡ x d x = − cos ⁡ x + C \int \sin x \mathbf{d}x=-\cos x+C sinxdx=cosx+C
8 d ( tan ⁡ x ) = sec ⁡ 2 x   d x \mathbf{d}(\tan x)=\sec^2x\ \mathbf{d}x d(tanx)=sec2x dx ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^2x (tanx)=sec2x ∫ sec ⁡ 2 x d x = ∫ 1 cos ⁡ 2 x = tan ⁡ x + C \int \sec^2x\mathbf{d}x=\int \cfrac{1}{\cos^2x}=\tan x+C sec2xdx=cos2x1=tanx+C
|
9 d ( cot ⁡ x ) = − csc ⁡ 2 x   d x \mathbf{d}(\cot x)=-\csc^2x\ \mathbf{d}x d(cotx)=csc2x dx ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^2x (cotx)=csc2x ∫ csc ⁡ 2 x d x = ∫ 1 sin ⁡ 2 x = − cot ⁡ x + C \int \csc^2x\mathbf{d}x=\int \cfrac{1}{\sin^2x}=-\cot x+C csc2xdx=sin2x1=cotx+C
10 d ( sec ⁡ x ) = sec ⁡ x   tan ⁡ x   d x \mathbf{d}(\sec x)=\sec x\ \tan x\ \mathbf{d}x d(secx)=secx tanx dx ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int \sec x \tan x\mathbf{d}x=\sec x+C secxtanxdx=secx+C
11 d ( csc ⁡ x ) = − csc ⁡ x cot ⁡ x   d x \mathbf{d}(\csc x)=-\csc x\cot x\ \mathbf{d}x d(cscx)=cscxcotx dx ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \int \csc x \cot x \mathbf{d}x=-\csc x+C cscxcotxdx=cscx+C
| 反三角函数
12 d ( arcsin ⁡ x ) = 1 1 − x 2 d x \mathbf{d}(\arcsin x)=\cfrac{1}{\sqrt{1-x^2}}\mathbf{d}x d(arcsinx)=1x2 1dx ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\cfrac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1 ∫ 1 1 − x 2 = arcsin ⁡ x + C \int \cfrac{1}{\sqrt{1-x^2}}=\arcsin x+C 1x2 1=arcsinx+C
13 d ( arccos ⁡ x ) = − 1 1 − x 2 d x \mathbf{d}(\arccos x)=-\cfrac{1}{\sqrt{1-x^2}}\mathbf{d}x d(arccosx)=1x2 1dx ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\cfrac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1
14 d ( arctan ⁡ x ) = 1 1 + x 2 d x \mathbf{d}(\arctan x)=\cfrac{1}{1+x^2}\mathbf{d}x d(arctanx)=1+x21dx ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\cfrac{1}{1+x^2} (arctanx)=1+x21 ∫ 1 1 + x 2 = arctan ⁡ x + C \int \cfrac{1}{1+x^2}=\arctan x+C 1+x21=arctanx+C
15 d ( a r c c o t   x ) = − 1 1 + x 2 d x \mathbf{d}(arccot\ x)=-\cfrac{1}{1+x^2}\mathbf{d}x d(arccot x)=1+x21dx ( a r c c o t x ) ′ = − 1 1 + x 2 (arccot x)'=-\cfrac{1}{1+x^2} (arccotx)=1+x21

积分续表

∫ k d x = k x + C , ( k 、 C 是 常 数 ) \int k \mathbf{d}x=kx+C,(k、C是常数) kdx=kx+C,kC

∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int \tan x\mathbf{d}x=-\ln |\cos x|+C tanxdx=lncosx+C

∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot x\mathbf{d}x=\ln |\sin x|+C cotxdx=lnsinx+C

∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec x\mathbf{d}x=\ln|\sec x+\tan x|+C secxdx=lnsecx+tanx+C

∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int \csc x\mathbf{d}x=\ln|\csc x-\cot x|+C cscxdx=lncscxcotx+C

∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C \int \cfrac{1}{a^2+x^2}\mathbf{d}x=\cfrac{1}{a}\arctan \cfrac{x}{a}+C a2+x21dx=a1arctanax+C

∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int \cfrac{1}{x^2-a^2}\mathbf{d}x=\cfrac{1}{2a}\ln \vert \dfrac{x-a}{x+a} \vert + C x2a21dx=2a1lnx+axa+C

∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C \int \cfrac{1}{\sqrt{a^2-x^2}}\mathbf{d}x=\arcsin \cfrac{x}{a}+C a2x2 1dx=arcsinax+C

∫ 1 x 2 + a 2 d x = ln ⁡ ∣ x + x 2 + a 2 ∣ + C \int \cfrac{1}{\sqrt{x^2+a^2}}\mathbf{d}x=\ln |x+\sqrt{x^2+a^2}|+C x2+a2 1dx=lnx+x2+a2 +C

∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int \cfrac{1}{\sqrt{x^2-a^2}}\mathbf{d}x=\ln|x+\sqrt{x^2-a^2}|+C x2a2 1dx=lnx+x2a2 +C

你可能感兴趣的:(数学)