最新最全论文合集——纵向联邦学习

AMiner平台(https://www.aminer.cn)由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。

必读论文:https://www.aminer.cn/topic

论文集地址:https://www.aminer.cn/topic/6041cd4892c7f9be2178a235

纵向联邦学习(vertical federated learning)在两个数据集的用户重叠较多而用户特征重叠较少的情况下,我们把数据集按照纵向(即特征维度)切分,并取出双方用户相同而用户特征不完全相同的那部分数据进行训练。这种方法叫做纵向联邦学习。比如有两个不同的机构,一家是某地的银行,另一家是同一个地方的电商。它们的用户群体很有可能包含该地的大部分居民因此用户的交集较大。但是,由于银行记录的都是用户的收支行为与信用评级,而电商则保有用户的浏览与购买历史,因此它们的用户特征交集较小。纵向联邦学习就是将这些不同特征在加密的状态下加以聚合,以增强模型能力。目前,逻辑回归模型、树形结构模型和神经网络模型等众多机器学习模型已经逐渐被证实能够建立在此联邦体系上。

该论文集共收录22篇论文,引用最多的论文为Privacy preserving association rule mining in vertically partitioned data,引用数为1324。

最新最全论文合集——纵向联邦学习_第1张图片
最新最全论文合集——纵向联邦学习_第2张图片
最新最全论文合集——纵向联邦学习_第3张图片

AMiner,一个具有认知智能的学术搜索引擎:https://www.aminer.cn

#AMiner# #论文#

你可能感兴趣的:(AMiner,Topic推荐,AMiner会议)