- 【论文阅读】Meta-SE: A Meta-Learning Framework for Few-Shot Speech Enhancement
Bosenya12
论文阅读
这篇文章介绍了一个名为Meta-SE的元学习框架,专门用于少样本(few-shot)语音增强问题。文章的核心目标是解决在实际应用中,由于训练样本有限而导致传统深度神经网络(DNN)模型性能受限的问题。Meta-SE通过元学习的方法,利用先验的元知识快速适应新的任务和噪声类型,即使只有少量训练样本也能表现出色。背景知识与研究动机语音增强技术旨在从带噪语音信号中恢复目标语音,提升语音质量和可懂度。深度
- 【实战派×学院派】32|上线后一堆优化需求,到底是 Bug 还是改进?
郭菁菁
(BA/PM)实战派常踩的坑学院派如何补上bug业务分析需求分析BA
学院派:用Bug/Enhancement分类机制+优化反馈池+二次迭代评审机制,避免优化失控、节奏紊乱你是不是也遇到过这样的场景:“这个报表逻辑不太合理,麻烦调整下。”“那个按钮位置不合适,顺便挪一挪吧。”“这个功能可以加个提醒吗?体验会好一点。”项目刚上线没多久,各路优化意见像潮水一样涌来。最让人头疼的是:到底这些算Bug(缺陷)还是Enhancement(优化改进)?该优先处理哪个?哪些该打回
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能自然语言处理
论文主要内容总结研究背景与问题大语言模型(LLMs)在决策领域展现出巨大潜力,但预训练模型存在推理能力不足、难以适应新环境的问题,严重制约了其在复杂现实任务中的应用。现有方法如强化学习(RL)单独使用或LLM辅助RL的方式,仍依赖token预测范式,缺乏结构化推理和快速适应性。核心框架与方法提出因果感知大语言模型(Causal-awareLLMs),将结构因果模型(SCM)整合到决策过程中,采用“
- 水下图像增强(UIE)当前SOTA方法代码分享
石头192
人工智能python水下图像增强图像增强
所有方法均提供源代码和在三个公开数据集(RUIE,LSUI,UIEB)上的复现实验结果,私信可以获得任意水下数据集实验结果。1.U-shape_Transformer_for_Underwater_Image_Enhancement-main2.FUnIE-GAN-master3.Ucolor_final_model_corrected4.UDnet-main5.Water_Net-code_py
- 图像处理 | 基于matla的多尺度Retinex(MSR)和自适应直方图均衡化(CLAHE)算法联合的低照度图像增强(附代码)
单北斗SLAMer
图像处理算法人工智能低照度图像增强
低照度图像增强1、算法原理2、代码实现3、关键步骤说明4、效果5、扩展建议6、原图7、结果1、算法原理2、代码实现functionenhanced_img=MSR_CLAHE_Enhancement(img_path)%读取图像img=imread(img_path
- 论文阅读:Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Ef
clvsit
RAG论文阅读LLM
检索增强生成(RAG)技术利用大型语言模型(LLM)的上下文学习能力,生成更准确、更相关的响应。RAG框架起源于简单的“检索-阅读”方法,现已发展成为高度灵活的模块化范式。其中一个关键组件——查询重写模块,通过生成搜索友好的查询来增强知识检索。这种方法能使输入问题与知识库更紧密地结合起来。作者的研究发现了将QueryRewriter模块增强为QueryRewriter+的机会,即通过生成多个查询来
- 信息隐藏|MBRS:Enhancing Robustness of DNN-based Watermarking by Mini-Batch of Real and Simulated JPEG
csq7
dnn人工智能神经网络
文章来源MM'21:Proceedingsofthe29thACMInternationalConferenceonMultimedia提出问题:传统的编码器-噪声层-解码器不能很好的确保JPEG压缩的鲁棒性,JPEG是非差分(不可微)的且是图像处理不可避免的曹组。解决问题:提出利用Mini-BatchofRealandSimulatedJPEGcompression(MBRS)来增强JPEG鲁棒
- Enhancing Robustness in Large Language Models: Prompting for Mitigating the Impact of Irrelevant
UnknownBody
LLMDailyLLMPrompt语言模型人工智能
本文是LLM系列文章,针对《EnhancingRobustnessinLargeLanguageModels:PromptingforMitigatingtheImpactofIrrelevantInformation》的翻译。增强大型语言模型的鲁棒性:提示减轻不相关信息的影响摘要1引言2相关工作3GSMIR数据库4LLM受不相关信息影响的主要原因5分析到过滤提示6实验7结论摘要近年来,大型语言模
- CON:Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models 论文解读
亦万
大模型RAGCOTCON
目前RALM主要存在两个问题:搜索结果误导性:搜索结果依赖其召回和排序,所以不一定和问题相关,不相关的结果融合到大模型中会给大模型带来误导导致错误的答案(甚至有的时候大模型依靠内部记忆能够正确回答);回复幻觉问题:针对无法回答的问题(不管是搜索结果还是内部记忆),大模型有时也会一本正经的胡说八道。本篇paperCON(Chain-of-Note)主要就是解决上面两个问题:如下图所示,有三种情况搜索
- 【学习笔记6】论文SQLfuse: Enhancing Text-to-SQL Performance through Comprehensive LLM Synergy
||Φ|(|T|Д|T|)|Φ||/
sql
AbstractText-to-SQL转换是一项关键创新,简化了从复杂SQL语句到直观自然语言查询的转换,尤其在SQL在各类岗位中广泛应用的情况下,这一创新显得尤为重要。随着GPT-3.5和GPT-4等大型语言模型(LLMs)的兴起,这一领域得到了极大的推动,提供了更好的自然语言理解能力和生成细致入微的SQL语句的能力。然而,在Text-to-SQL应用中,开源LLMs的潜力尚未得到充分挖掘,许多
- 【论文阅读】VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning
s1ckrain
强化学习AIGC计算机视觉论文阅读多模态大模型强化学习
VideoChat-R1:EnhancingSpatio-TemporalPerceptionviaReinforcementFine-Tuning原文摘要研究现状:强化学习有关方法在视频理解任务中的应用仍未被充分探索。研究目标:方法:采用强化微调(RFT)结合GRPO,专门针对视频MLLMs进行优化。目标:增强模型对视频时空感知的能力。保持模型的通用能力。实验与发现RFT在小样本数据下即可显著提
- Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model论文阅读
青铜锁00
#退化论文阅读论文阅读图像处理
Structure-RevealingLow-LightImageEnhancementViaRobustRetinexModel1.论文研究目标与实际意义1.1研究目标1.2实际问题与产业意义2.论文提出的新方法与模型2.1鲁棒Retinex模型架构2.1.1经典Retinex模型的局限性2.1.2鲁棒Retinex模型的创新引入2.2优化目标函数设计2.2.1基线分解模型(BaselineDe
- 探索人脸修复与增强的奇妙世界:Awesome Face Restoration & Enhancement
鲍凯印Fox
探索人脸修复与增强的奇妙世界:AwesomeFaceRestoration&Enhancement去发现同类优质开源项目:https://gitcode.com/在数字图像处理和计算机视觉的浩瀚宇宙中,AwesomeFaceRestoration&Enhancement项目犹如一颗璀璨的新星,为追求高精度人脸图像改善的研究者和开发者们提供了宝贵的资源库。本项目由热爱技术分享的社区成员发起,灵感源自
- Enhancing Forward-Looking Image Resolution: Combining Low-Rank and Sparsity Priors论文阅读
青铜锁00
论文阅读Radar论文阅读
EnhancingForward-LookingImageResolution:CombiningLow-RankandSparsityPriors1.论文的研究目标与实际问题意义1.1研究目标1.2实际问题与产业意义2.论文提出的新方法、模型与公式解析2.1联合低秩与稀疏模型2.2ADMM-ALM求解算法2.3方法优势3.实验设计与结果验证3.1实验设置3.2关键结果4.未来研究方向与挑战4.1
- 工业 4.0 与大模型协同驱动企业深度价值实现 —— 基于 DEEPSEEK 框架的理论与实践
Wnq10072
DEEPSEEK大模型工业4.0人工智能
引言工业4.0通过物联网(IoT)、数字孪生、边缘计算等技术重构制造业价值链,而大模型(LargeLanguageModels,LLM)的涌现为数据价值挖掘提供了新范式。本文提出DEEPSEEK价值实现框架(Data-drivenExploration,Enhancement,Prediction,andSmartDecision-making),论证工业4.0基础设施是大模型赋能企业的必要前提,
- 【论文阅读】SAM2LONG: ENHANCING SAM 2 FOR LONGVIDEO SEGMENTATION WITH A TRAINING-FREE MEMORY TREE
s1ckrain
计算机视觉论文阅读计算机视觉机器学习
SAM2LONG:ENHANCINGSAM2FORLONGVIDEOSEGMENTATIONWITHATRAINING-FREEMEMORYTREE原文摘要:背景与问题:SAM2是一种强大的基础模型,用于图像和视频中的对象分割。其记忆模块通过从先前帧提取对象感知记忆来辅助当前帧预测。但贪心选择的记忆设计存在“错误累积”问题,影响长视频分割性能。解决方案:提出SAM2Long,一种无训练的视频对象分
- 【氮化镓】GaN HEMTs 在金星及恶劣环境下的应用
北行黄金橘
氮化镓器件可靠性生成对抗网络人工智能神经网络
文章是关于GaN增强模式晶体管(enhancement-modep-GaN-gateAlGaN/GaNHEMTs)在金星探索和其它恶劣环境下的应用研究。文章由QingyunXie等人撰写,发表在《AppliedPhysicsLetters》上,属于(Ultra)Wide-bandgapSemiconductorsforExtremeEnvironmentElectronics特刊。标题与作者标题:
- sap 一代增强_SAP增强Enhancement
weixin_39958025
sap一代增强
第一代:基于源码增强(子过程subroutine)第一代增强基于源代码,是SAP提供的一个空代码的子过程。在这个子过程中用户可以添加自己的代码,控制自己的需求。这类增强集中在一些文件名倒数第二个字符为Z的包含程序中。一般是以UserExit_打头的子过程,因此形象地称其为用户出口。用户出口Include在SAP标准程序的源代码里,可以说是源代码的一部分,更改用户出口就相当于更改SAP标准程序,是需
- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- Audio-Visual Speech Enhancement(视听语音增强)领域近三年研究进展与国内团队及手机厂商动态分析
AndrewHZ
深度学习新浪潮智能手机算法计算机视觉硬件架构硬件工程智能硬件
一、视听语音增强领域近三年研究进展多模态融合与模型轻量化多模态特征融合:中国科学技术大学团队提出通过引入超声舌头图像和唇部视频的联合建模,结合知识蒸馏技术,在训练阶段利用教师模型传递舌部运动知识,从而在推断时仅依赖唇部视频即可提升语音增强效果。此外,中科院声学所提出基于泰勒展开的模型架构,将幅度-相位解耦与空间-谱域解耦重新建模,提升算法可解释性并优化性能。轻量化模型设计:中国科大与腾讯天籁实验室
- ABAP 关于通过使用BAPI创建销售订单(抬头信息中:含增强字段)
SAPmatinal
ABAP技术
通过bapi函数创建销售订单,并更新增强字段1,为构造增强字段(BAPE_VBAK,BAPE_VBAKX,VBAK,VBAKKOM,)2,增强标准程序:将增强的字段赋给标准程序(FV45KFAK->FV45KFAK_VBAK_FUELLEN_VBAKKOM->vbak_fuellen_vbakkom)ENHANCEMENT1ZSD_SAPFV45K."activeversion*创建销售订单时候,
- RAG-Driven Enhancement of Multimodal Electronic Health Records Analysis via Large Language Models
UnknownBody
RAGforLLMMultimodal语言模型机器学习人工智能
本文是LLM系列文章,针对《REALM:RAG-DrivenEnhancementofMultimodalElectronicHealthRecordsAnalysisviaLargeLanguageModels》的翻译。REALM:RAG驱动的通过大语言模型增强多模态电子健康记录分析摘要1引言2相关工作3问题定义4方法5实验设置6实验结果7结论摘要多模态电子健康记录(EHR)数据的集成显著提高了
- 论文阅读:Deep Bilateral Learning for Real-Time Image Enhancement-google-hdrnet-slicing
SetMaker
论文阅读
项目地址:https://gitcode.com/google/hdrnethdrnet作为超分领域的经典文章,由google提出主要用来用轻量化的方法来实现高分辨率的图像生成,hdrnet结合cnn可以让更高分辨率的图像部署在板端。如图所示,原始图像比如4k图像,首先分为两个主要模块:grid和guide。grid就是对应图上面的那一条特征提取网络,具体来说,原始图像经过下采样之后,默认256分
- C# OpenCvSharp DNN Low Light image Enhancement
天天代码码天天
C#人工智能实践dnn人工智能神经网络机器学习计算机视觉深度学习c#
目录介绍效果模型信息项目代码下载C#OpenCvSharpDNNLowLightimageEnhancement介绍github地址:https://github.com/zhenqifu/PairLIE效果模型信息ModelProperties-----------------------------------------------------------------------------
- Enhancing WiFi7|How IPQ9574 and IPQ9554 Collaborate with QCN9274
自动驾驶人工智能
EnhancingWiFi7NetworkEfficiency:HowIPQ9574andIPQ9554CollaboratewithQCN9274Inthefast-pacedworldofwirelessnetworking,thepursuitofefficiencyisparamount.WiththeadventofWiFi7,thelatestiterationofwirelesste
- 关于文献Multi-Frame Quality Enhancement for Compressed Video的理解
醉生梦死的七楼
英文文献深度学习HEVC改善non-PQFs
本博文仅作小白学习记录使用,论文原文在资料下载处可见,所有疑惑点均作了标注。欢迎各位大佬交流批评指正,侵删。题目:压缩视频的多帧质量增强摘要过去的几年中,深度学习已经很好地应用在提高压缩视频的质量上,现存的方法主要是对单帧进行质量提高,忽略了连续帧之间的相关性。在本文中,我们研究了在压缩视频帧之间存在严重的质量波动,通过使用邻域高质量帧可以改善低质量帧的质量,这种方法叫做多帧质量增强(MFQE)。
- MFQE 2.0: A New Approach for Multi-FrameQuality Enhancement on Compressed Video
mytzs123
视频编码相关参考论文MFQE2.0
在过去几年中,深度学习在提高压缩图像/视频质量方面取得了巨大成功。现有的方法主要着眼于提高单个帧的质量,而没有考虑连续帧之间的相似性。由于本文所研究的压缩视频帧之间存在较大的波动,因此,对于相邻的高质量帧,可以利用帧相似性来提高低质量帧的质量。此任务是多帧质量增强(MFQE)。因此,本文提出了一种用于压缩视频的MFQE方法,作为这方面的首次尝试。在我们的方法中,我们首先开发了一种基于双向长短时记忆
- Low-Light Image Enhancement with Normalizing Flow
m0_37860076
论文阅读flow-model深度学习
基础理论知识点:李宏毅flow-model:参考博客、flow-model视频Flow-model参考博客3Methodology在本节中,首先介绍以往基于像素级重建损失的微光增强方法的局限性。然后,介绍了图2中我们的框架的总体范式。最后,我们提出的框架的两个组成部分分别说明。微光图像增强的目标是用微光图像xlx_lxl生成具有正常曝光xhx_hxh的高质量图像。配对样本(xl;xref)(x_l
- ACL2023:Enhancing Document-level Event Argument Extraction with Contextual Clues and Role Relevance
qq_42470633
自然语言处理深度学习神经网络transformer语言模型
1.简介论文题目:EnhancingDocument-levelEventArgumentExtractionwithContextualCluesandRoleRelevance论文来源:ACL2023Findings论文链接:https://aclanthology.org/2023.findings-acl.817代码链接:https://github.com/LWL-cpu/SCPRG-m
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo