- 【原创】大数据治理入门(6)《数据标准与元数据管理:构建大数据治理的基石》入门必看 高赞实用
精通代码大仙
数据库hadooppython大数据数据库python数据挖掘
数据标准与元数据管理引言:数据标准的重要性在大数据治理中,数据标准的制定和元数据管理是确保数据质量、一致性和可追溯性的关键环节。数据标准可以规范数据的采集、存储和处理流程,而元数据管理则可以帮助企业更好地理解和管理其数据资源。本文将详细探讨数据标准的重要性、元数据的概念及其管理方法,并分享企业实践案例。元数据的概念:什么是元数据定义:元数据(Metadata)是指描述数据的数据,它提供了关于数据的
- L2正则线性回归(岭回归)
一壶浊酒..
深度学习回归线性回归
岭回归数据的特征比样本点还多,非满秩矩阵在求逆时会出现问题岭回归即我们所说的L2正则线性回归,在一般的线性回归最小化均方误差的基础上增加了一个参数w的L2范数的罚项,从而最小化罚项残差平方和简单说来,岭回归就是在普通线性回归的基础上引入单位矩阵。回归系数的计算公式变形如下岭回归最先用来处理特征数多于样本数的情况,现在也用于在估计中加入偏差,从而得到更好的估计。这里通过引入λ来限制了所有w之和,通过
- 论数据治理的价值:解锁数字时代的核心竞争力
ShiTuanWang
java大数据人工智能数据提取数据挖掘数据治理
在数字化转型浪潮席卷全球的今天,数据已成为企业最宝贵的资产之一,其重要性不亚于传统的资本、人力和技术。然而,随着数据量的爆炸性增长和来源的多样化,如何有效管理、利用和保护这些数据,成为了摆在企业面前的重要课题。数据治理,作为一套系统化的管理框架,其价值日益凸显,成为企业解锁数字时代核心竞争力的关键。一、提升数据质量,奠定决策基石数据治理的首要价值在于提升数据质量。通过制定统一的数据标准、规范数据采
- pytorch torch.norm函数介绍
qq_27390023
pytorch人工智能python
torch.norm函数用于计算张量的范数(norm),可以理解为张量的“长度”或“大小”。根据范数的不同类型,它可以衡量不同的张量性质。该函数可以计算向量和矩阵的多种范数,如L1范数、L2范数、无穷范数等。1.函数签名torch.norm(input,p='fro',dim=None,keepdim=False,dtype=None,out=None)input:需要计算范数的输入张量。p:范数
- 利用全核范数去噪技术优化彩色图像处理
潦草通信狗
人工智能深度学习
一、引言图像去噪是图像处理领域中一个经典且重要的问题。随着技术的发展,各种算法不断涌现,其中全变分(TotalVariation,TV)方法因其在边缘保持方面的优势而广受欢迎。本文将介绍一种基于全核范数(TotalNuclearNorm,TNN)的去噪技术,该技术在处理彩色图像时表现出色。二、算法原理全核范数去噪技术基于全变分理论,通过最小化包含数据保真项和正则项的目标函数来实现去噪。数据保真项确
- 第二届协同经济理论创新叙述研讨会
你说我叫啥
北京邮电大学-闫强《国际视角下的数字经济的发展》总结要点1.主要包括数字经济的测度、规则、内容2.特征:包容、灵活、协同提高用户覆盖面提高公民的使用数字化经济的素养规范数字经济的发展政府数字经济商业模式的创新网络信用或者数字信用企业、政府、个人大大的使用数字服务、ICT服务,未来数字经济将大行其道开篇提出在国际上怎么样讲好中国方案,怎么样去寻找共同的话语体系,在国际的对话空间上,在数字经济上大家是
- 2023-03-11
牵手到永远
为什么需要在元宇宙中规范数字身份?在互联网上,大多数人没有属于自己的数字身份相反,他们将有关自己的信息存入网站或应用程席,然后该网站或应用程序可以通过多种方式使用这些数据,其中一种方式是将其资产化的能力.如果用户想跨越多个数字平台和元宇宙,就其数字身份而言,而不是作为其他各方持有的信息片段,那么他们将需要一个属于自己的独特数字身份从某种意义上说,这种身份已经存在,即能够使用另一个网站(如Faceb
- 24.8.24学习心得
kkkkk021106
学习
x.grad.zero_()y=x.sum()y.backward()x.gradtensor([1.,1.,1.,1.])因为y是x中所有元素的总和,所以x的每个元素对y的贡献都是相等的,因此每个元素的梯度都是1。u=y.detach()detach()方法用于从计算图中分离出一个张量,使其不再跟踪历史,这样就不会在反向传播时影响u。范数(Norm)是一个数学概念,在不同的领域有不同的应用,比如
- 【机器学习】3. 欧式距离,曼哈顿距离,Minkowski距离,加权欧式距离
pen-ai
机器学习机器学习人工智能深度学习pythonscikit-learn
Euclidean-L2normL2范数D(A,B)=(a1−b1)2+(a2−b2)2+...D(A,B)=\sqrt{(a_1-b_1)^2+(a_2-b_2)^2+...}D(A,B)=(a1−b1)2+(a2−b2)2+...ManhattanD(A,B)=∣a1−b1∣+∣a2−b2∣+...D(A,B)=\sqrt{|a_1-b_1|+|a_2-b_2|+...}D(A,B)=∣a1−
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- 数据库设计
数据库mysql
数据库表设计设计思路a.进行需求分析,梳理业务流程,识别业务实体,明确数据库表的功能和目标。b.确定各个实体的属性,建立各实体之间的关系,包括一对一,一对多,多对多等等。c.尽量遵循数据库三范式(列不可分割,属性完全依赖主键,属性之间不相互依赖)进行具体的设计。适当时候可以反范式设计,比如通过个别冗余的字段来减少联表查询,以空间换时间。设计准则1.命名规范数据库表名、字段名、索引名需要命名规范,一
- 数值计算·第二集:矩阵的条件数(Matlab版)
J@u1
数值优化数值计算
条件数的倒数:rcond(A):A为矩阵,rcond(A)为A的1范数的条件数的倒数的估计值。如果A的条件数越好,那么其值在1.0附近;反之,则在无穷小附近。%%矩阵的条件数A=[11,2,3,4;7,-2,-3,-4;0.1,0.2,0.3,0.5;5,7,8,9];%1范数的条件数Ac1=cond(A,1);%2范数的条件数Ac2=cond(A,2);%无穷范数的条件数Acw=cond(A,i
- 【深度学习】Pytorch 系列教程(三):PyTorch数据结构:2、张量的数学运算(1):向量运算(加减乘除、数乘、内积、外积、范数、广播机制)
QomolangmaH
#PyTorch深度学习pytorch数据结构向量运算范数
文章目录一、前言二、实验环境三、PyTorch数据结构0、分类1、Tensor(张量)1.维度(Dimensions)2.数据类型(DataTypes)3.GPU加速(GPUAcceleration)2、张量的数学运算1.向量运算a.简单运算b.广播操作c.运算函数加法add乘法mul内积(点积)dot外积(叉积)cross范数norm一、前言 本文将介绍PyTorch中张量的数学运算之向量运算
- 通俗易懂的L0范数和L1范数及其Python实现
superdont
计算机视觉python开发语言人工智能计算机视觉opencv矩阵
定义L0范数(L0-Norm)L0范数并不是真正意义上的一个范数,因为它不满足范数的三角不等式性质,但它在数学优化和信号处理等领域有着实际的应用。L0范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为:[|x|_0=\text{numberofnon-zeroelementsin}x]例如,向量(x=[1,0,2,0,3])的L0范数是3,因为该向量中有三个非零元素。L1范数
- 基于 Python 和 cvxpy 求解 SOCP 二阶锥规划问题
- Easy
优化python数学建模线性代数自动驾驶机器人
cvxpy:Python功能包,为凸优化提供方便使用的用户接口,适配多种求解器SOCP:Second-OrderConeProgramming,二阶锥规划convexoptimization-凸优化,nonlinearoptimization-非线性优化timecomplexity-时间复杂度,polynomial-time-多项式时间Euclideannorm-欧几里德范数文章目录什么是SOCP
- 《深度学习》阅读笔记
林子闲_5f12
chapter22.4线性相关和生成子空间一组向量的生成子空间:原始向量线性组合后能到达的点的所组成的空间的集合列向量的冗余称为线性相关,列向量线性相关的方阵称为奇异矩阵。2.5范数范数常被用于衡量向量的大小。L2范数即机器学习中常用的MSE,但在原点处增长太缓慢。当0和非0元素间的差异非常重要时,使用L1范数。衡量矩阵的大小:frobenius范数2.6特征分解由矩阵的特征值定义可以推得正定:所
- 数据库范式及函数依赖
种棵二叉树
Java学习数据库
数据库范式及函数依赖数据库设计是数据库系统中至关重要的一环,而范式理论是数据库设计中的基础概念之一。在数据库设计中,我们通常使用范式来规范数据库中的关系模式,以减少数据冗余、提高数据一致性,并保证数据的完整性。在这篇博客中,我们将介绍数据库设计中的三种主要范式,以及与之相关的函数依赖。1.第一范式(1NF)第一范式要求关系模式中的每个属性都是原子的,即不可再分。这意味着属性的域中不能包含集合、列表
- 【深度学习】S2 数学基础 P2 线性代数(下)
脚踏实地的大梦想家
#深度学习深度学习线性代数人工智能
目录范数L1范数L2范数本节博文是线性代数第二部分,主要内容为L1L1L1范数与L2L2L2范数;有关线性代数基础知识,请访问:【深度学习】S2数学基础P1线性代数(上)范数在线性代数中,范数是一个数学概念,用于量化向量或矩阵的大小或长度。范数是一个满足一系列性质的函数,这些性质包括正定性、齐次性和三角不等式。范数定义了向量空间的内积(或点积)的概念,并且与向量空间的度量空间相关联。L1范数L2范
- Bytebase 签约 Aptive,助力北美商住害虫控制服务领导者构建统一数据库操作平台
在数字化快速发展时代,有效的规范数据库管理对企业安全运营至关重要。近日,数据库DevOps团队协同管理工具Bytebase签约北美商住害虫控制服务的领导者AptiveEnvironmental,旨在全面优化AptiveEnvironmental的数据库操作管理,收口全体员工的变更和查询操作,以提高整体业务效率,数据安全及合规。AptiveEnvironmental,成立于2015年,总部位于美国犹
- 泛函分析 第二章 线性算子与线性泛函
73826669
数学#泛函分析
文章目录第二章线性算子与线性泛函线性算子的概念定义2.1.1线性算子定义2.1.8线性算子的连续性定义2.1.12算子的范数Riesz定理及其应用定理2.2.1F.Riesz纲与开映像定理定义2.3.1疏定义2.3.4纲集定理2.3.6Baire纲定理定理2.3.7Banach逆算子定理定理2.3.8开映像定理定义2.3.9闭线性算子定理2.3.12B.L.T定理2.3.13等价范数定理定理2.3
- 大规模机器学习简介
思诺学长
机器学习人工智能
1.非线性回归问题1.1问题描述我们有一组实验数据,每个实验都给出了输入和输出对(Xn,Yn)。每个输入是空间中的一个点,每个输出是空间中的一个点。这些数据点被假设为独立同分布(i.i.d)。我们的目标是找到一个函数fw,它能够最好地拟合数据,形式如下:这里是一个参数化的函数族,参数属于空间,而是误差项。要找到最佳拟合,我们需要解决以下形式的优化问题:这里的表示欧几里得范数,也就是常说的L2范数,
- Excel——有效性、二级菜单联动
爱学习的时小糖
excelexcel
一、录入规范数据1.手动输入序列录入有效性信息选择需要录入有效性的所有单元格选择【数据】——【有效性】——【有效性】在【允许】输入的值之间选择【序列】在【序列】输入框中输入想要选择的值,中间用逗号(必须是英文逗号)隔开。点击【确定】,效果如下所示:2.选择有效性信息序列有时候需要输入的序列过多,我们可以将需要输入的序列单独放在一个单元格,方便后面鼠标选择输入。选择需要添加有效性信息的单元格选择【数
- QGIS数据分析入门——Qgis下载及界面介绍(一)
shishi521
qgis数据分析数据挖掘qgis
QGIS是免费的地图数据展示和分析工具。课程任务本教程使用QGIS3.20建议您按照本教程中的详细制图步骤,通过QGIS使用示范数据一步一步实际动手操作,完成教程中的制图任务。将会学到的其他技巧如何查看和修改QGIS下载安装,设置中文。如何使用QGIS界面介绍。软件下载1.软件下载直接百度搜索“qgis下载”,从.org这样的结尾的官网上下载2.直接点击我分享的下载地址下载QGIShttps://
- L1与L2损失函数和正则化的区别
山阴少年
本文翻译自文章:DifferencesbetweenL1andL2asLossFunctionandRegularization,如有翻译不当之处,欢迎拍砖,谢谢~ 在机器学习实践中,你也许需要在神秘的L1和L2中做出选择。通常的两个决策为:1)L1范数vsL2范数的损失函数;2)L1正则化vsL2正则化。作为损失函数 L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE
- GradNorm理解
sdbhewfoqi
深度学习人工智能机器学习深度学习
主要参考这一篇,GradNorm:GradientNormalizationforAdaptiveLossBalancinginDeepMultitaskNetworks,梯度归一化_gradnorm-CSDN博客14:20-15:30提前需要理解的概念损失函数,衡量ypred与ytruth的差距。GradLoss定义为:各个任务【实际的梯度范数】与【理想的梯度范数】的【差的绝对值和】;先把范数简
- Pytorch入门> 1.1张量的运算广播机制及其他操作
codanlp
Pytorchpytorchpython张量
1.张量运算张量的四则运算:加x+y,减x-y,乘x*y,除x/y其他运算:幂x**y,指数函数torch.exp()对张量所有元素求和.sum()张量的范数torch.norm(),其中tensor必须为浮点数。importtorchu=torch.tensor([3.,4.])torch.norm(u)2.torch.cat()张量的拼接dim=0时按行拼接(加在后面),dim=1时按列拼接(
- 数据治理到底是什么?为什么要做数据治理?
图扑可视化
人工智能大数据运维三维可视化数据治理
数据治理的两个目标:一个是提质量,一个是控安全。通过业务流程优化,规范数据从产生、处理、使用到销毁的整个生命周期,使得数据在各阶段、各流程环节安全可控,合规使用。数据治理治的是“数据”吗?数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。数据可以分为两个部分,一是数字,二是文字。数字是没有意义的抽象符号,数据是有意义的数字。文
- Bytebase 签约 Aptive,助力北美商住害虫控制服务领导者构建统一数据库操作平台
Bytebase
数据库运维DBA开发者数据库管理DevOps
在数字化快速发展时代,有效的规范数据库管理对企业安全运营至关重要。近日,数据库DevOps团队协同管理工具Bytebase签约北美商住害虫控制服务的领导者AptiveEnvironmental,旨在全面优化AptiveEnvironmental的数据库操作管理,收口全体员工的变更和查询操作,以提高整体业务效率,数据安全及合规。AptiveEnvironmental,成立于2015年,总部位于美国犹
- L1归一化和L2归一化范数的详解和区别
code_Rocker
algorithm&&dataprocess机器学习L1L2
一句话介绍就是:L1norm就是绝对值相加,又称曼哈顿距离;L2norm就是欧几里德距离之和2范数:在向量范数范围内:1范数就是等于各个值的绝对值相加,这里不贴公式了。从公式上来说:L1的公式:绝对值相加L2的公式:欧几里德距离之和就是样本和标签之差的平方之和两个范数的简单性能对比:在正则化中二者的区别:同时注意由于L1是绝对值之和,因此同一个问题得出的解可能有多个:祭出万年不变的求街区最短路径,
- 03-规范日期格式
HuaLuLemon
Shell脚本实战ShellLinux
需求分析shell脚本开发存在的一个问题是各种不一致的数据格式。规范数据格式的难度可小可大。数据格式算是其中最有挑战性的工作之一,这是因为指定日期的方法各种各样。哪怕是提示过特定的格式,例如按照“月-日-年”,照样有可能得到不一致的输入:月份没有采用数字,而是用了月份名称或月份名称缩写,甚至还有全部是大写字母的月份全称。有鉴于此,一个能够规范日期的函数,尽管本身很基础,却能在后续的脚本编写工作中帮
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag