- 模拟退火算法:原理、应用与优化策略
尹清雅
算法
摘要模拟退火算法是一种基于物理退火过程的随机搜索算法,在解决复杂优化问题上表现出独特优势。本文详细阐述模拟退火算法的原理,深入分析其核心要素,通过案例展示在函数优化、旅行商问题中的应用,并探讨算法的优化策略与拓展方向,为解决复杂优化问题提供全面的理论与实践指导,助力该算法在多领域的高效应用与创新发展。一、引言在现代科学与工程领域,复杂优化问题无处不在,如资源分配、路径规划、机器学习模型参数调优等。
- ALO蚁狮优化算法:从背景到实战的全面解析
der丸子吱吱吱
智能优化算法ALO算法
目录引言背景2.1蚁狮优化算法的起源2.2自然启发式算法的背景2.3ALO的发展与应用原理3.1蚁狮的生物行为3.2ALO的数学建模3.3算法流程与关键步骤实战应用4.1函数优化问题4.2工程优化案例4.3组合优化与约束优化代码实现与结果分析5.1Python代码实现5.2实验设计与结果分析5.3性能评估与优化建议学习资源6.1工具推荐6.2网站与文献资源6.3ALO与AI结合的方法结论1.引言在
- C语言的回溯算法
苏墨瀚
包罗万象golang开发语言后端
C语言中的回溯算法引言回溯算法(Backtracking)是一种通过搜索所有可能的候选解,找到符合条件的解的算法。它常用于解决一些组合问题、约束满足问题和优化问题。回溯算法的核心思想是通过尝试并逐步构建解的过程,在发现某个解不能继续时,从当前解的最后一个决策点“回溯”到之前的状态,进行其他可能性的探索。在这篇文章中,我们将探讨回溯算法的基本思想、基本框架及其在C语言中的具体实现,应用实例等。回溯算
- 基础算法--背包问题
不会搬砖的淡水鱼
基础算法算法java动态规划贪心算法
背包问题概念完全背包(无限背包)0-1背包概念背包问题是一个经典的组合优化问题,其目标是在给定的一组物品中选择一些物品放入背包中,使得物品的总价值最大化,同时要求背包的总重量不超过背包的容量限制。背包问题有两种常见的变体:完全背包和0-1背包。鉴于完全背包计算过程相对0-1背包简单,这里先讲完全背包。完全背包(无限背包)在完全背包问题中,每个物品可以选择放入背包中的次数是无限的,即可以重复选择。每
- 书籍-《优化基础:理论、工具及应用(论文版)》
机器学习人工智能
书籍:OptimizationEssentials:Theory,Tools,andApplications作者:FaizHamid出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《优化基础:理论、工具及应用(论文版)》01书籍介绍本书探讨了运筹学和数学优化领域的最新发展和令人兴奋的挑战。它以统一且精心编排的方式呈现了以下内容:(a)现实生活中出现的新颖优化问题,并突出每
- 混合整数非线性规划的松弛与分解方法
Waiyuet Fung
混合整数非线性规划松弛方法分解技术启发式算法全局优化
背景简介混合整数非线性规划(MINLPs)作为运筹学中的一个重要领域,涉及到优化问题的连续和离散变量混合,在工程设计、生产调度、资源分配等多个领域发挥着关键作用。本书由I.Nowak撰写,旨在深入探讨这一复杂的优化问题及其解决方案。MINLPs基础概念在本书的第一部分,Nowak介绍了MINLPs的基本概念。MINLPs的目标是寻找一组连续和整数变量的最优组合,以最小化或最大化某个非线性目标函数。
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- 【优化选址】基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究(Matlab代码实现)
荔枝科研社
matlab数据结构算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究一、引言二、海上救援选址多目标优化问题分析(一)成本因素(二)救援时间因素(三)可靠性因素三、多目标遗传NSGAII算法(一)算法原理(二)在
- 关于非线性优化小记
文弱_书生
乱七八糟算法
非线性优化(NonlinearOptimization)1.什么是非线性优化?非线性优化是指目标函数或约束条件中至少有一个是非线性的优化问题。它广泛应用于工程、经济、人工智能、机器学习等领域,用于求解最优解的问题。非线性优化通常可以表示为以下数学形式:minxf(x)或maxxf(x)\min_{x}f(x)\quad\text{或}\quad\max_{x}f(x)xminf(x)或xmax
- 群体智能优化算法-旗鱼优化算法 (Sailfish Optimizer, SFO,含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要旗鱼优化算法(SailfishOptimizer,SFO)是一种模拟旗鱼(Sailfish)和沙丁鱼(Sardine)之间捕食关系的新型元启发式算法。通过在搜索过程中模拟旗鱼对沙丁鱼的捕食行为,以及沙丁鱼群的逃逸与防御机制,SFO平衡了全局探索与局部开发,在处理复杂优化问题时具有良好的收敛性能。本文提供了SFO的核心思路并提供了完整MATLAB代码及详细中文注释,以帮助读者快速理解并应用该算法
- 遗传算法与深度学习实战(2)——生命模拟及其应用
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(2)——生命模拟及其应用0.前言1.康威生命游戏1.1康威生命游戏的规则1.2实现康威生命游戏1.3空间生命和智能体模拟2.实现生命模拟3.生命模拟应用小结系列链接0.前言生命模拟是进化计算的一个特定子集,模拟了自然界中所观察到的自然过程,例如粒子或鸟群的聚集方式。生命模拟只是用来探索和优化问题的模拟形式之一,还有很多其他形式的模拟,可以更好地建模各种过程,但它们都源于康威
- 解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析
木子算法
多目标优化人工智能算法多目标人工智能
解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析在工程优化、机器学习等众多领域,约束多目标优化问题(CMOPs)广泛存在。传统方法在处理这类问题时,常因可行区域不连通或约束违反局部极小点陷入停滞。近期,IEEETransactionsonEvolutionaryComputation上的一篇论文提出了一种新颖的解决方案——MOEA/D-DAE算法,通过结合检测-逃逸策略(DAE)和
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- 如何在Futter开发中做性能优化?
Ever69
性能优化
目录1.避免不必要的Widget重建问题:频繁调用setState()导致整个Widget树重建。优化策略:2.高效处理长列表问题:ListView一次性加载所有子项导致内存暴涨。优化策略:3.图片加载优化问题:加载高分辨率图片导致内存溢出。优化策略:4.动画性能优化问题:复杂动画导致UI卡顿。优化策略:5.状态管理优化问题:全局状态变化导致无关Widget重建。优化策略:6.避免阻塞UI线程问题
- 开源项目的企业级性能优化服务:高价值咨询
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题《开源项目的企业级性能优化服务:高价值咨询》关键词:开源项目、企业级性能优化、性能评估、性能瓶颈、高可用性、性能优化服务、案例研究、优化策略摘要:本文章深入探讨了开源项目在企业环境中的性能优化问题,详细介绍了企业级性能优化服务的核心概念、方法、策略和实战案例。文章结构清晰,内容丰富,旨在为企业和开发人员提供高价值的性能优化咨询。目录第一部分:背景与核心概念第1章:开源项目的企业级性能优化概
- GAN生成对抗网络小记
文弱_书生
乱七八糟生成对抗网络人工智能神经网络
生成对抗网络(GAN)深入解析:数学原理与优化生成对抗网络(GenerativeAdversarialNetwork,GAN)是一个基于博弈论的深度学习框架,通过生成器(G)和判别器(D)之间的对抗训练,生成高度逼真的数据。其核心思想是让GGG生成伪造数据以欺骗DDD,而DDD则努力分辨真实数据与伪造数据。GAN在理论上可以看作一个极小极大(Minimax)优化问题。1.GAN的数学公式1.1生成
- 深度学习 常见优化器
Humingway
深度学习人工智能
一、基础优化器随机梯度下降(SGD)•核心:∇θJ(θ)=η*∇θJ(θ)•特点:学习率固定,收敛路径震荡大•适用场景:简单凸优化问题•改进方向:动量加速二、动量系优化器2.SGDwithMomentum•公式:v_t=γv_{t-1}+η∇θJ(θ)•效果:平滑梯度更新,加速收敛•经典参数:γ=0.9(多数场景推荐)三、自适应学习率家族3.Adagrad•创新:∇θJ(θ)_t=∇θJ(θ)/(
- 多目标优化算法之NSGA-II、NSGA-III(附Matlab免费代码)
优化算法侠Swarm-Opti
智能优化算法算法matlab开发语言优化算法NSGA
引言NSGA-II和NSGA-III都是非支配排序遗传算法的变种,用于解决多目标优化问题,但它们在多个方面存在差异。相同点基本框架相似:两者都基于遗传算法的框架,包括初始化种群、非支配排序、选择、交叉和变异等操作非支配排序:都采用非支配排序技术,将种群中的个体划分为不同的前沿,识别非支配解集不同点适用目标数量不同:NSGA-II:适用于相对较少的目标数量,通常在2到4个目标之间,在处理较少目标的问
- 用物理信息神经网络(PINN)解决实际优化问题:全面解析与实践
青橘MATLAB学习
深度学习网络设计人工智能深度学习物理信息神经网络强化学习
摘要本文系统介绍了物理信息神经网络(PINN)在解决实际优化问题中的创新应用。通过将物理定律与神经网络深度融合,PINN在摆的倒立控制、最短时间路径规划及航天器借力飞行轨道设计等复杂任务中展现出显著优势。实验表明,PINN相比传统数值方法及强化学习(RL)/遗传算法(GA),在收敛速度、解的稳定性及物理保真度上均实现突破性提升。关键词:物理信息神经网络;优化任务;深度学习;强化学习;航天器轨道一、
- QP 问题(Quadratic Programming, 二次规划)
BineHello
算法人工智能强化学习自动驾驶线性代数
QP问题(QuadraticProgramming,二次规划)是什么?QP(QuadraticProgramming,二次规划)是一类优化问题,其中目标函数是二次型函数,约束条件可以是线性等式或不等式。QP问题是线性规划(LP,LinearProgramming)的扩展形式,广泛应用于最优控制、机器学习、金融优化、信号处理等领域。一、QP问题的数学定义标准形式的QP问题如下:minx12xTQx
- DP 问题 -- LQR中的DP问题
BineHello
自动驾驶算法人工智能强化学习
深入地介绍线性二次调节问题(LinearQuadraticRegulator,LQR),并详细说明它作为动态规划(DP)的一个经典应用问题的求解过程。一、LQR问题定义(最优控制视角)LQR问题是一种特殊的最优控制问题,系统动力学为线性、代价函数为二次型的优化问题:离散时间线性系统:xt+1=Axt+Butx_{t+1}=Ax_t+Bu_txt+1=Axt+Butxt∈Rnx_t\in\mathb
- 在 cmake_modules 目录下编写 FindG2O.cmake 以集成 G2O
XU磊260
SLAMc++开发语言
1.简介在使用G2O(GeneralGraphOptimization)库进行优化问题求解时,通常需要在CMake项目中正确配置G2O的头文件和库文件路径。由于G2O并未提供官方的CMake配置文件,因此需要手动编写FindG2O.cmake以确保CMake能够正确找到G2O的依赖项。本文将详细解析FindG2O.cmake的编写方式,并介绍其工作原理。2.CMake中的FindG2O.cmake
- 高级java每日一道面试题-2025年2月20日-数据库篇-大表如何优化 ?
java我跟你拼了
java每日一道面试题数据库java大表优化索引分页
如果有遗漏,评论区告诉我进行补充面试官:大表如何优化?我回答:在Java高级面试中讨论大表优化问题时,理解并能详细阐述各种优化策略和技术实现是至关重要的。以下是结合提供的信息进行综合后的详细解析:大表优化的背景当数据库中的单表记录数变得非常庞大时,数据库操作(CRUD)的性能会显著下降,这不仅影响应用的响应速度,还可能导致系统资源耗尽,影响业务的稳定性。因此,对大表进行有效的优化是提升数据库性能的
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- 1.3 最优化的基本概念
西瓜毛毛猫
最优化算法
系统分类一般来说,最优化算法研究可以分为:构造最优化模型、确定最优化问题的类型与设计算法、实现算法或调用优化算法软件包进行求解。最优化模型的构造与实际问题息息相关。打个比方,给定二维欧几里得空间的若干个分离点,假定它们可以通过一条直线分成两部分,也可以通过一条曲线分成两部分。那么分别使用直线和曲线所得到的最优化模型是不同的。在前文的问题中,目标函数与约束函数都是由模型来决定的。在确定模型后,我们再
- 遗传算法基础讲解
HH予
深度学习
一、遗传算法基础1.什么是遗传算法?一种模拟生物进化过程的优化算法,基于达尔文的“自然选择”和“遗传学理论”。核心思想:通过选择(优胜劣汰)、交叉(基因重组)、变异(基因突变)操作,逐步逼近问题的最优解。2.为什么用遗传算法?适用性强:解决复杂的非线性、多峰、离散或连续优化问题。无需梯度信息:对目标函数的数学性质要求低,适合黑箱优化。全局搜索能力:通过种群并行搜索,避免陷入局部最优,适合多维优化。
- 寻找最优解的算法-模拟退火算法(Simulated Annealing)
搞技术的妹子
算法模拟退火算法人工智能
模拟退火算法(SimulatedAnnealing,简称SA)是一种基于物理退火过程的优化算法。它灵感来源于金属退火过程中的分子运动——在高温下,金属分子的自由度很高,随着温度的逐渐降低,分子排列逐渐有序,最终达到最低能量状态。退火算法通过模拟这一过程,解决复杂的优化问题。在现实生活中,我们经常会遇到寻找最优解的问题,无论是优化路线、调度任务还是调整模型参数。模拟退火算法(SimulatedAnn
- 【量子退火(Quantum Annealing, QA)在Machine Learning Classification中的应用】
搞技术的妹子
机器学习量子计算人工智能
随着量子计算技术的发展,**量子退火(QuantumAnnealing,QA)成为了优化问题中一种潜力巨大的方法。它不仅可以用于求解传统优化问题,还被逐渐应用于机器学习领域,特别是机器学习分类(MachineLearningClassification)**任务中。在这篇博客中,我们将探讨量子退火在机器学习分类中的应用,并通过一个实际的案例来展示如何使用量子退火优化分类模型。什么是量子退火(Qua
- 部分背包问题(贪心算法)
萧毅寒
贪心算法算法
一、概念与问题背景部分背包问题是一种经典的优化问题,其中给定一系列物品,每个物品有一定的重量和价值,目标是在一个固定容量的背包中装入物品,使得背包中物品的总价值最大。与0/1背包问题不同,部分背包问题允许将物品分割,即可以只选择物品的一部分装入背包。二、贪心策略介绍对于部分背包问题,贪心算法是一种有效的解决策略。贪心策略的基本思想是,在每一步选择中,都采取在当前状态下最好或最优(即最有利)的选择,
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s