Caffe图片训练分类研究、深度学习图片分类
转载请注明:http://blog.csdn.net/forest_world
一、NSFW研究
1、安装Docker
http://www.linuxidc.com/Linux/2014-08/105656.htm
安装Docker使用apt-get命令:
$ apt-get install docker.io
创建软连接
ln -sf /usr/bin/docker.io /usr/local/bin/docker
sudo service docker stop
sudo service docker start
2、
sudo docker build -t caffe:cpu https://raw.githubusercontent.com/BVLC/caffe/master/docker/standalone/cpu/Dockerfile
Step 0 : FROM ubuntu:14.04
---> 35b394a6f7a2
Step 1 : MAINTAINER [email protected]
---> Using cache
---> ca50125d0951
Step 2 : RUN apt-get update && apt-get install -y --no-install-recommends build-essential cmake git wget libatlas-base-dev libboost-all-dev libgflags-dev libgoogle-glog-dev libhdf5-serial-dev libleveldb-dev liblmdb-dev libopencv-dev libprotobuf-dev libsnappy-dev protobuf-compiler python-dev python-numpy python-pip python-scipy && rm -rf /var/lib/apt/lists/*
---> Running in d6856e1b4740
Ign http://archive.ubuntu.com trusty InRelease
Get:1 http://archive.ubuntu.com trusty-updates InRelease [65.9 kB]
Get:2 http://archive.ubuntu.com trusty-security InRelease [65.9 kB]
Get:3 http://archive.ubuntu.com trusty Release.gpg [933 B]
Get:4 http://archive.ubuntu.com trusty-updates/main Sources [474 kB]
Get:5 http://archive.ubuntu.com trusty-updates/main Sources [474 kB]
Get:6 http://archive.ubuntu.com trusty-updates/restricted Sources [5247 B]
Get:7 http://archive.ubuntu.com trusty-updates/universe Sources [209 kB]
Get:8 http://archive.ubuntu.com trusty-updates/main amd64 Packages [1131 kB]
......
Removing intermediate container d3643cce1d7e
Step 7 : ENV PYCAFFE_ROOT $CAFFE_ROOT/python
---> Running in e4e4019889f8
---> e982c669b99b
Removing intermediate container e4e4019889f8
Step 8 : ENV PYTHONPATH $PYCAFFE_ROOT:$PYTHONPATH
---> Running in a9ee4331bbe8
---> 8a1867b64b5c
Removing intermediate container a9ee4331bbe8
Step 9 : ENV PATH $CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH
---> Running in bc2a271a95bd
---> 864daab5c633
Removing intermediate container bc2a271a95bd
Step 10 : RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig
---> Running in d0af6f3e69ea
---> fa8b1e810492
Removing intermediate container d0af6f3e69ea
Step 11 : WORKDIR /workspace
---> Running in ab94152a0a18
---> 49ffbf2d8fef
Removing intermediate container ab94152a0a18
Successfully built 49ffbf2d8fef
3、
git clone https://github.com/yahoo/open_nsfw
$ cd open_nsfw
@ubuntu:~$ git clone https://github.com/yahoo/open_nsfw
Cloning into 'open_nsfw'...
remote: Counting objects: 31, done.
remote: Compressing objects: 100% (20/20), done.
Unpacking objects: 32% (10/31)
4、
I1012 05:17:23.226325 1 net.cpp:228] relu_stage0_block0 does not need backward computation.
I1012 05:17:23.226327 1 net.cpp:228] eltwise_stage0_block0 does not need backward computation.
I1012 05:17:23.226331 1 net.cpp:228] scale_stage0_block0_branch2c does not need backward computation.
I1012 05:17:23.226333 1 net.cpp:228] bn_stage0_block0_branch2c does not need backward computation.
I1012 05:17:23.226336 1 net.cpp:228] conv_stage0_block0_branch2c does not need backward computation.
I1012 05:17:23.226339 1 net.cpp:228] relu_stage0_block0_branch2b does not need backward computation.
I1012 05:17:23.226342 1 net.cpp:228] scale_stage0_block0_branch2b does not need backward computation.
I1012 05:17:23.226346 1 net.cpp:228] bn_stage0_block0_branch2b does not need backward computation.
I1012 05:17:23.226348 1 net.cpp:228] conv_stage0_block0_branch2b does not need backward computation.
I1012 05:17:23.226351 1 net.cpp:228] relu_stage0_block0_branch2a does not need backward computation.
I1012 05:17:23.226354 1 net.cpp:228] scale_stage0_block0_branch2a does not need backward computation.
I1012 05:17:23.226356 1 net.cpp:228] bn_stage0_block0_branch2a does not need backward computation.
I1012 05:17:23.226359 1 net.cpp:228] conv_stage0_block0_branch2a does not need backward computation.
I1012 05:17:23.226362 1 net.cpp:228] scale_stage0_block0_proj_shortcut does not need backward computation.
I1012 05:17:23.226366 1 net.cpp:228] bn_stage0_block0_proj_shortcut does not need backward computation.
I1012 05:17:23.226368 1 net.cpp:228] conv_stage0_block0_proj_shortcut does not need backward computation.
I1012 05:17:23.226372 1 net.cpp:228] pool1_pool1_0_split does not need backward computation.
I1012 05:17:23.226374 1 net.cpp:228] pool1 does not need backward computation.
I1012 05:17:23.226378 1 net.cpp:228] relu_1 does not need backward computation.
I1012 05:17:23.226380 1 net.cpp:228] scale_1 does not need backward computation.
I1012 05:17:23.226383 1 net.cpp:228] bn_1 does not need backward computation.
I1012 05:17:23.226387 1 net.cpp:228] conv_1 does not need backward computation.
I1012 05:17:23.226389 1 net.cpp:228] data does not need backward computation.
I1012 05:17:23.226392 1 net.cpp:270] This network produces output prob
I1012 05:17:23.226526 1 net.cpp:283] Network initialization done.
I1012 05:17:23.277700 1 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: nsfw_model/resnet_50_1by2_nsfw.caffemodel
I1012 05:17:23.277819 1 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
I1012 05:17:23.283418 1 net.cpp:761] Ignoring source layer loss
NSFW score: 0.000410715758335
二、
#include
#ifdef USE_OPENCV
#include
#include
#include
#endif // USE_OPENCV
#include
#include
#include
#include
#include
#include
#ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file);
std::vector Classify(const cv::Mat& img, int N = 5);
private:
void SetMean(const string& mean_file);
std::vector<float> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector * input_channels);
void Preprocess(const cv::Mat& img,
std::vector * input_channels);
private:
shared_ptrfloat> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
};
Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
SetMean(mean_file);
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
/* Return the top N predictions. */
std::vector Classifier::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img);
N = std::min<int>(labels_.size(), N);
std::vector<int> maxN = Argmax(output, N);
std::vector predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
}
return predictions;
}
/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->Forward();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector * input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Classifier::Preprocess(const cv::Mat& img,
std::vector * input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
int main(int argc, char** argv) {
if (argc != 6) {
std::cerr << "Usage: " << argv[0]
<< " deploy.prototxt network.caffemodel"
<< " mean.binaryproto labels.txt img.jpg" << std::endl;
return 1;
}
::google::InitGoogleLogging(argv[0]);
string model_file = argv[1];
string trained_file = argv[2];
string mean_file = argv[3];
string label_file = argv[4];
Classifier classifier(model_file, trained_file, mean_file, label_file);
string file = argv[5];
std::cout << "---------- Prediction for "
<< file << " ----------" << std::endl;
cv::Mat img = cv::imread(file, -1);
CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector predictions = classifier.Classify(img);
/* Print the top N predictions. */
for (size_t i = 0; i < predictions.size(); ++i) {
Prediction p = predictions[i];
std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
<< p.first << "\"" << std::endl;
}
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV
string model_file ("E:\\ cpp_classification\\caffe.prototxt");
string trained_file ("E:\\ cpp_classification\\caffe.caffemodel");
string mean_file ("E:\\cpp_classification\\mean.binaryproto");
string label_file ("E:\\ cpp_classification\\labels.txt");
Classifier classifier(model_file, trained_file, mean_file, label_file);
string file ("E:\\ cpp_classification\\test.jpg");
参考学习资料:
http://m.blog.csdn.net/article/details?id=52443126 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【一】如何在Visual Studio中像使用OpenCV一样使用Caffe
http://mp.weixin.qq.com/s?__biz=MzI1NTE4NTUwOQ==&mid=2650325557&idx=1&sn=362d476d3b3820ea56e4672369565e4f&chksm=f235a53fc5422c2939f76b7e8f5265333f3159b0ec4275fe733d27e7a03f17395b0460a318d2&mpshare=1&scene=1&srcid=1017Le0xZeDhioc9DxPIGNN9#wechat_redirect IJCAI16论文速读:Deep Learning论文选读(上)
http://www.cnblogs.com/carle-09/p/5779304.html 4 .caffe:train_val.prototxt、 solver.prototxt 、 deploy.prototxt( 创建模型与编写配置文件)
http://blog.csdn.net/deeplearninglc007/article/details/40086503 使用Caffe对图片进行训练并分类的简单流程
http://blog.csdn.net/wang4959520/article/details/51841110 将train_val.prototxt 转换成deploy.prototxt
http://blog.csdn.net/hyman_yx/article/details/51732656 Caffe均值文件mean.binaryproto转mean.npy
http://blog.csdn.net/shakevincent/article/details/51694686微软Caffe编译
http://www.cnblogs.com/alexcai/p/5469436.html caffe简易上手指南(二)—— 训练我们自己的数据
http://www.aiuxian.com/article/p-1659539.html 深度学习–如何利用Caffe进行训练ImageNet网络
http://www.th7.cn/system/win/201602/153606.shtml caffe for windows 下使用caffemodel 实现cifar10的图像分类
http://blog.csdn.net/dcxhun3/article/details/52021296 用训练好的caffemodel来进行分类
http://neuralnetworksanddeeplearning.com/chap1.html CHAPTER 1 Using neural nets to recognize handwritten digits
http://www.cnblogs.com/shishupeng/p/5694775.html 深度卷积网络CNN与图像语义分割
本文地址:http://blog.csdn.net/forest_world