计算机视觉、机器视觉、数字图像处理、机器学习/深度学习+图像处理 四者的关系

一、机器能进行视觉感知的进化发展(就算机器能识别各种物体用处大吗)

小猫有眼睛,认识吃的就吃,看到危险就躲,还能抓苍蝇。那具有运动能力的机器没有视觉怎么做出决策和会执行。机器拿到数字图像如何提取感知信息(像小猫认识吃,判别危险,感知苍蝇的位置)
人眼感知信息:空间、色彩、形状、运动

1 机器人需要视觉感知

机器人(Robot)是一种能够半自主或全自主工作的智能机器,具有感知、决策、执行等基本特征,可以辅助甚至替代人类完成危险、繁重、复杂的工作,提高工作效率与质量,服务人类生活,扩大或延伸人的活动及能力范围。

1 从成像原理、数字化、图像处理到提取感知信息

1、发展:小孔成像–>采样–>数字图像–>计算机处理–>让计算机获取感知语义信息
2 起初图像处理包含:存储、压缩、增强、修复,供人们观看获取信息
3、随着机器人技术、计算机技术、自动化技术、数据挖掘算法技术发展,迫切需要机器具有人眼感知距离、形状特征、识别目标、空间位置、运动信息。

二、计算机视觉(计算分析算法)和机器视觉(软硬系统构建)差异

  1. 计算机视觉是采用图像处理、模式识别、人工智能技术相结合的手段,着重于一幅或多幅图像的计算机分析。机器视觉则偏重于计算机视觉技术工程化,能够自动获取和分析特定图像,以控制相应的行为。
  2. 机器视觉偏向工业应用,但是核心算法也是图像处理提取信息,计算机视觉不管硬件怎么搭建特定功能的实现,主要还是图像感知信息的提取算法

1 机器视觉是一项综合技术(测量检测)

  1. 机器视觉主要是指工业领域的视觉研究,例如自主机器人的视觉,用于检测和测量的视觉。这表明在这一领域通过软件硬件,图像感知与控制理论往往与图像处理得到紧密结合来实现高效的机器人控制或各种实时操作
  2. 机器视觉包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、 I/O卡等)。
  3. 一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。

2 计算机视觉:研究图像语义内容(帮助决策的信息)(通过语义特征识别、追踪目标)

通过视觉观察、理解世界,具有自主适应环境的能力,识别(检索,跨模态)、检测、分割、跟踪
计算机视觉、机器视觉、数字图像处理、机器学习/深度学习+图像处理 四者的关系_第1张图片

三、机器学习、模式识别和大数据科技应用于计算机视觉

四、机器视觉核心:图像处理技术

图像处理是机器视觉检测的核心。在使用机器视觉对产品进行检测时需要通过以下几个环节,来实现产品图像的处理。

(1)图像采集

图像采集就是从工作现场获取场景图像的过程,是机器视觉的第一步,采集工具大多为CCD或CMOS照相机或摄像机。照相机采集的是单幅的图像,摄像机可以采集连续的现场图像。就一幅图像而言,它实际上是三维场景在二维图像平面上的投影,图像中某一点的彩色(亮度和色度)是场景中对应点彩色的反映。这就是我们可以用采集图像来替代真实场景的根本依据所在。
如果相机是模拟信号输出,需要将模拟图像信号数字化后送给计算机(包括嵌入式系统)处理。现在大部分相机都可直接输出数字图像信号,可以免除模数转换这一步骤。不仅如此,现在相机的数字输出接口也是标准化的,如USB、VGA、1394、HDMI、WiFi、Blue Tooth接口等,可以直接送入计算机进行处理,以免除在图像输出和计算机之间加接一块图像采集卡的麻烦。后续的图像处理工作往往是由计算机或嵌入式系统以软件的方式进行。

(2)图像预处理

对于采集到的数字化的现场图像,由于受到设备和环境因素的影响,往往会受到不同程度的干扰,如噪声、几何形变、彩色失调等,都会妨碍接下来的处理环节。为此,必须对采集图像进行预处理。常见的预处理包括噪声消除、几何校正、直方图均衡等处理。
通常使用时域或频域滤波的方法来去除图像中的噪声;采用几何变换的办法来校正图像的几何失真;采用直方图均衡、同态滤波等方法来减轻图像的彩色偏离。总之,通过这一系列的图像预处理技术,对采集图像进行“加工”,为体机器视觉应用提供“更好”、“更有用”的图像。

(3)图像分割

图像分割就是按照应用要求,把图像分成各具特征的区域,从中提取出感兴趣目标。在图像中常见的特征有灰度、彩色、纹理、边缘、角点等。例如,对汽车装配流水线图像进行分割,分成背景区域和工件区域,提供给后续处理单元对工件安装部分的处理。
图像分割多年来一直是图像处理中的难题,至今已有种类繁多的分割算法,但是效果往往并不理想。近来,人们利用基于神经网络的深度学习方法进行图像分割,其性能胜过传统算法。

(4)目标识别和分类

在制造或安防等行业,机器视觉都离不开对输入图像的目标进行识别和分类处理,以便在此基础上完成后续的判断和操作。识别和分类技术有很多相同的地方,常常在目标识别完成后,目标的类别也就明确了。近来的图像识别技术正在跨越传统方法,形成以神经网络为主流的智能化图像识别方法,如卷积神经网络(CNN)、回归神经网络(RNN)等一类性能优越的方法。

(5)目标定位和测量

在智能制造中,最常见的工作就是对目标工件进行安装,但是在安装前往往需要先对目标进行定位,安装后还需对目标进行测量。安装和测量都需要保持较高的精度和速度,如毫米级精度(甚至更小),毫秒级速度。这种高精度、高速度的定位和测量,倚靠通常的机械或人工的方法是难以办到的。在机器视觉中,采用图像处理的办法,对安装现场图像进行处理,按照目标和图像之间的复杂映射关系进行处理,从而快速精准地完成定位和测量任务。

(6)目标检测和跟踪

图像处理中的运动目标检测和跟踪,就是实时检测摄像机捕获的场景图像中是否有运动目标,并预测它下一步的运动方向和趋势,即跟踪。并及时将这些运动数据提交给后续的分析和控制处理,形成相应的控制动作。图像采集一般使用单个摄像机,如果需要也可以使用两个摄像机,模仿人的双目视觉而获得场景的立体信息,这样更加有利于目标检测和跟踪处理。

五 机器视觉的应用和优势

机器视觉的应用与优势

1、机器视觉技术的应用范围

(1) 在工业检测方面

近几十年来,在工业检测中利用视觉系统的非接触、速度快、精度合适、现场抗干扰能力强等突出的优点,使机器视觉技术得到了广泛的应用,取得了巨大的经济与社会效益。

自动视觉识别检测目前已经用于产品外形和表面缺陷检验,如木材加工检测、金属表面视觉检测、二极管基片检查、印刷电路板缺陷检查、焊缝缺陷自动识别等。这些检测识别系统属于二维机器视觉,技术已经较为成熟,其基本流程是用一个摄像机获取图像,对所获取的图像进行处理及模式识别,检测出所需的内容。

(2) 在医学上的应用

在医学领域,机器视觉主要用于医学辅助诊断。首先采集核磁共振、超声波、激光、X射线、γ射线等对人体检查记录的图像,再利用数字图像处理技术、信息融合技术对这些医学图像进行分析、描述和识别,最后得出相关信息,对辅助医生诊断人体病源大小、形状和异常,并进行有效治疗发挥了重要的作用。不同医学影像设备得到的是不同特性的生物组织图像,如X射线反映的是骨骼组织,核磁共振影像反映的是有机组织图像,而医生往往需要考虑骨骼有机组织的关系,因而需要利用数字图像处理技术将两种图像适当地叠加起来,以便于医学分析。

(3) 交通监控领域中的应用

智能交通监控领域中,在重要的十字路口安放摄像头,就可以利用摄像头的快速拍照功能,实现对违章、逆行等车牌的车牌进行自动识别、存贮,以便相关的工作人员进行查看。

(4) 在桥梁检测领域中的应用

人工检测法和桥检车法都是依靠人工用肉眼对桥梁表面进行检测,其速度慢,效率低,漏检率高,实时性差,影响交通,存在安全隐患,很难大幅应用;无损检测包括激光检测、超声波检测以及声发射检测等多种检测技术,它们仪器昂贵,测量范围小,不能满足日益发展的桥梁检测要求;智能化检测有基于导电性材料的混凝土裂缝分布式自动检测系统和智能混凝土技术,也有最前沿的基于机器视觉的检测方法。导电性材料技术虽然使用方便,设备简单,成本低廉,但是均需要事先在混凝土结构上涂刷或者埋设导电性材料进行检测,而且智能混凝土技术还无法确定裂缝位置、裂缝宽度等一系列问题距实用化还有较长的距离;而基于机器视觉的检测方法是利用CCD相机获取桥梁表观图片,然后运用计算机处理后自动识别出裂缝图像,并从背景中分离出来然后进行裂缝参数的计算的方法,它具有便捷、直观、精确、非接触、再现性好、适应性强、灵活性高、成本低廉的优点,能解放劳动力,排除人为干扰,具有很好的应用前景。

据统计,混凝土桥梁的损坏有90%以上都是由裂缝引起的,因此对桥梁的健康检测主要是对桥梁表观的裂缝进行检测与测量。基于机器视觉的桥梁检测技术主要包括三部分内容:桥梁表观图像的获取技术、基于图像的裂缝自动识别理论与算法以及基于图像的裂缝宽度等病害程度定量化测量方法。

基于机器视觉的自动化、智能化检测技术已经在道路、隧道上得到了成功应用,在桥梁上也得到了初步的应用,但主要集中在视线开阔的高空混凝土构件表观图像获取技术上,在病害的自动识别方面仍停留在理论研究阶段,还无法应用于实际工程当中。

针对量大面广的混凝土梁体,智能化视频桥梁检测车进入理论与关键部件模型的研制阶段,但是受到桥梁细小裂缝自动识别与清晰图像快速化获取难度大的限制,目前离达到实用化程度的要求还相距甚远。

2、机器视觉技术的优势

  1. 效率:工业自动化的快速发展,使生产效率大幅提升,从而对检测效率提出了更高的要求。人工检测效率是在一个固定区间,无法大幅提升,而在流水线重复且机械化的检测过程中,检察人员很容易出现疲劳而导致检测效率降低;而机器视觉能够更快的检测产品,特别是在生产线检测高速运动的物体时,机器能够提高检测效率,速度甚至能够到达人工10-20倍;
  2. 精度:由于人员有物理条件的限制,即使是依靠放大镜或显微镜来检测产品,也会受到主观性方面的影响,精度无法得到保证,而且不同的检测人员的标准也会存在有差异;在精确性上机器有明显的优点,它的精度能够达到千分之一英寸。而且机器不受主观控制,只要参数设置没有差异,相同配置的多台机器均能保持相同精度
  3. 客观性:人工检测难免会出现疲劳,同时有一个致命缺陷,就是情绪带来的主观性,检测结果会随检察人员心情的好坏产生变化;而机器没有喜怒哀乐,它所带来的检测结果自然更加客观可靠。
  4. 重复性:机器可以以相同的方法一次一次的完成检测工作而不会感到疲倦;与此相反,人工长期重复性检测肯定会产生疲劳,同时每次检测产品时都会有细微的不同,即使产品是完全相同。
  5. 环境:机器视觉是通过即图像摄取装置将目标转换成图像信号,传送给专用的图像处理系统,在测量工件过程中,无需与工件进行接触,因此能够适应恶劣危险生产环境,同时也不会对工件造成接触性损伤;而人工则需要与工件进行接触性检测,因为无法应对恶劣环境,且在检查过程中不可避免的会对工件造成接触性损伤;
  6. 成本: 机器视觉前期投入会比较多,但属于一次性投入,长期产出,由于机器视觉的发展越来越迅速,价格也会逐渐降低;而人工检测则需要长期投入,且人工管理成本会呈不断上升的趋势。由于机器比人工的检测效率高很多,因此长期来看,机器视觉成本会更低;
  7. 信息集成:机器视觉可以通过多工位检测方法,一次性完成待检产品的轮廓、尺寸、外观缺陷、产品高度等多技术参数的测量;而人工检测在面对不同的检测内容时,只能通过多工位合作协调完成,而不同员工检测标准不一,极容易出现误检的情况;
  8. 数字化:机器视觉在工作过程中产生的说要测量数据,均可独立拷贝或以网络连接方式拷出,便于生产过程统计和分析。同时还可在检测后导出指定数据并生产报表,无需人工一一添加,这无疑大大优于人工检测的数据统计;

总体来说,机器视觉对比人工检测具有自动化、客观、非接触和高精度等特点。特别是在工业生产领域,机器视觉强调生产的精度和速度,以及工业现场环境下的可靠性,在重复和机械性的工作中具有较大的应用价值,对企业来说是实现自动化生产重要的一步。

你可能感兴趣的:(计算机视觉)