- Cell Insight | 单细胞测序技术又一新发现,可用于HIV-1和Mtb共感染个体诊断
尐尐呅
结核病是艾滋病合并其他疾病中导致患者死亡的主要原因。其中结核病由结核分枝杆菌(Mycobacteriumtuberculosis,Mtb)感染引起,获得性免疫缺陷综合症(艾滋病)由人免疫缺陷病毒(Humanimmunodeficiencyvirustype1,HIV-1)感染引起。国家感染性疾病临床医学研究中心/深圳市第三人民医院张国良团队携手深圳华大生命科学研究院吴靓团队,共同研究得出单细胞测序
- 用了这么多年的PCA可视化竟然是错的!!!
生信宝典
本文启发于上周开的单细胞转录组课程,本次课程由资深单细胞算法研究者戴老师主讲,深入浅出,各部分分析原理从理论到应用层面解释透彻,最新流程,最新代码,绝对值得学习。课程尚未结束,我就迫不及待向一位未能安排出时间参加此课程的老友及时安利了视频课。言归正传,介绍培训课程的一张幻灯片:很多PCA可视化结果都是不合适的。PCA或PCoA是常用的降维工具,之前有几篇文章介绍PCA的原理和可视化。一文看懂PCA
- 9.单细胞 RNA-seq:聚类分析
denghb001
学习目标:利用多种方法来评估聚类选择的PC基于重要的PC执行单细胞聚类单细胞RNA-seq聚类分析现在我们已经整合了高质量的细胞,我们想知道我们的细胞群中存在的不同细胞类型。image目标:为了生成特定细胞类型的簇,并使用已知的细胞类型的标志基因来确定的簇的身份。为了确定分群是否代表真实的细胞类型或由于生物或技术差异而形成的群集,如在细胞周期的S期的细胞群,特定批次的簇,或具有高线粒体含量的细胞。
- 高通量测序的数据处理与分析指北(二)--宏基因组篇
lantary
博客原文宏基因组篇前言之前的一篇文章已经从生物实验的角度讲述了高通量测序的原理,这篇文章旨在介绍宏基因组二代测序数据的处理方式及其原理。在正文开始之前,我们先来认识一下什么是宏基因组。以我的理解,宏基因组就是某环境中所有生物的基因组的合集,这个环境可以是下水道,河流等自然环境,也可以是人体内肠道,口腔等体环境。而宏基因组中的生物往往指的是微生物,如真菌,细菌,病毒,古细菌。我们这里主要以肠道微生物
- seurat自学笔记1.0 单细胞数据导入
Sanye2022
pythonpandas
Python读取.h5ad文件importanndataimportpandasaspdadata=anndata.read("/home/R/R_data/Seurat/PBMC10/output/adata.h5ad")#adata.X.todense()#将稀疏矩阵转成普通矩阵#X=pd.DataFrame(adata.X.todense())#cell_name=adata.obs.ind
- 2022-04-17
图灵基因
NatBiotech|组织中单细胞转录组的空间图谱原创图灵基因图灵基因2022-04-1707:03收录于话题#前沿生物大数据分析单细胞RNA测序(scRNA-seq)已经彻底改变了单细胞水平上的基因表达研究。最近,空间技术通过添加空间信息将转录组学提升到了一个新的水平。但是,它缺乏单细胞分辨率。现在,来自德克萨斯大学MD安德森癌症中心的一个小组开发了一种名为CellTrek的计算方法,将这两个数
- 生信人应该这样来装软件(未完待续)
dandanwu90
P1优先选择二进制可执行软件来安装不同组学任务模块比对重要全基因组测序/外显子测序找差异和变异转录组相关计数软件安装规律:二进制,下载解压,全路径调用#C语言查看在还是不在whichmakewhichcmakewhichjavawhichperlwhichpython#查看版本python--versionperl--version查看版本,版本问题导致错误如何判断所有软件是否是二进制,进入软件官
- 时空组专辑数据库文献详解 | 拟南芥叶片单细胞空间转录组图谱
尐尐呅
深圳华大生命科学研究院等在自主研发的时空组学技术Stereo-seq基础上,针对植物样本具有细胞壁这一特性,建立了一套适用于植物的、单细胞化的空间转录组技术scStereo-seq(single-cellSpaTialEnhancedREsolutionOmics-sequencing)。研究团队将其示范应用于模式植物拟南芥(Arabidopsis)的叶片研究中,对上、下表皮细胞、栅栏细胞、海绵细
- 2020-01-28
ab96a7f92f71
中西医对病毒性肺病诊治差别(浅析1)ab96a7f92f71字数289·阅读02020-01-2814:05西医除了追溯疾病症状与体征之外,更多借助于各种化验、检测手段和影像学,尤其是血常规和胸部高清CT影像加以诊断,还必须做咽拭子或下呼吸道分泌物寻找出病原体,例如有针对病毒核酸检测或培养测序和抗体滴度测试等。当然还进行全面身体测试数据发现以往的基础病或体质状态。中医主要运用望闻问切传统手段来辨别
- 7+纯生信,单细胞识别细胞marker+100种机器学习组合建模,机器学习组合建模取代单独lasso回归势在必行!
生信小课堂
影响因子:7.3研究概述:皮肤黑色素瘤(SKCM)是所有皮肤恶性肿瘤中最具侵袭性的类型。本研究从GEO数据库下载单细胞RNA测序(scRNA-seq)数据集,根据原始研究中定义的细胞标记重新注释各种免疫细胞,以确定其特异性标志。接着通过计算免疫细胞通信网络,结合对通信网络的大量分析和通信模式的识别,对所有网络进行了定量表征和比较。最后基于bulkRNA测序数据,使用机器学习训练了枢纽通讯细胞的特定
- 大模型日报2024-06-07
赛博 AI
大模型日报人工智能AIGCGPT4oOpenAIGemini
大模型日报2024-06-07大模型资讯大规模单细胞转录组学基础模型研究摘要:大型预训练模型已成为基础模型,在自然语言处理及相关领域取得突破。本文介绍了在单细胞转录组学领域应用大规模基础模型的研究进展。MMLU-Pro:评估语言理解模型的新基准摘要:MMLU-Pro是一个增强型基准,旨在评估语言理解模型在更广泛和更具挑战性的任务中的表现。最近,大型语言模型在自然语言处理领域取得了显著进展,推动了这
- 雷达图在单细胞数据分析中的应用
周运来就是我
听过周老师的课的同学,应该有印象:周老师在讲单细胞数据结构的时候提到过,单细胞数据是表达量数据,每个数值表示的是表达量,也就是含量,是一个非负数。表达量这个可以有绝对表达量和相对表达量,也就是所占的比例。基于这个简单淳朴的认知,其实我们就可以画出很多好玩的图,如雷达图。雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法。今天在逛一个单细胞免疫数据库的时候
- 推荐一份生物信息学入门很好的参考材料
小明的数据分析笔记本
链接是https://bioinformatics.uconn.edu/resources-and-events/tutorials-2/这个是康涅狄格大学(UniversityofConnecticut)提供的一份教程,主要的内容包括1、生物信息学中经常用到的文件格式image.png2、linux操作系统和R语言的基础知识image.png3、转录组数据的处理流程image.png这里包括有参
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- seurat提取表达矩阵_10X scRNA免疫治疗学习笔记-3-走Seurat标准流程
幸福的小酒瓶
seurat提取表达矩阵
刘小泽写于19.10.15笔记目的:根据生信技能树的单细胞转录组课程探索10XGenomics技术相关的分析课程链接在:http://jm.grazy.cn/index/mulitcourse/detail.html?cid=55第二单元第7讲:走Seurat标准流程【文章结构总-分-总,结尾有完整的代码,熟悉者前面可以跳过,去看后面8min完成的代码】前言前面介绍了自己利用cellrangerc
- scRNA-data中的R值
武艺晴小朋友你好
r语言数据可视化
愿武艺晴小朋友一定得每天都开心当我们测序拿得到各个样本中基因的表达值,就可以用基因表达值来表征样本间的相关性代码如下:#样本间相似性:R值相关性捕获到的基因在两个样本间表达趋势一致性exp_RNA1000)head(label)ggPoint(x=df$fed,y=df$memory_66d,size=1,title="r=0.41",colorDensity=TRUE,continuousSet
- 单细胞DNA测序方法比较及应用
6102
Lorenz曲线:越接近对角线,测序覆盖越均一Bulk大量细胞测序MDA直接使用DNA聚合酶Phi29扩增均一度:Bulk>MALBAC>MDA3种方法测肿瘤细胞CNV:横轴-染色体序列;纵轴-测序的覆盖深度fig.ABC:MALBAC法还算能看清拷贝数变异fig.D:Bulk法看拷贝数变异很直接清晰fig.E:MDA法拷贝数变异的信息较模糊生殖健康方面的一个应用染色体平衡易位,常见于习惯性流产家
- Trimmomatic 数据过滤
生信编程日常
Trimmomatic是一个很常用的Illumina平台数据过滤工具。支持SE和PE测序数据。主要用来去除Illumina平台的fastq序列中的接头,并根据碱基质量值对fastq进行修剪。用法:Trimmomatic=~/biotools/Trimmomatic-0.36/trimmomatic-0.36.jaradapter=~/biotools/Trimmomatic-0.36/adapte
- 零基础入门生信数据分析——导读
呆猪儿
生信之转录组——上游分析生信之转录组——下游分析学习方法r语言数据分析数据库数据挖掘需求分析大数据
零基础入门生信数据分析——导读生信数据分析,即生物信息学数据分析,是一个涵盖了生物学、计算机科学、数学和统计学等多个领域的交叉学科。它主要利用计算机算法和统计方法对生物学数据进行处理、分析和解释,以揭示生物分子、细胞、组织和生物体等各个层次的生物学规律和机制。本帖主要是为生信数据分析的各个分析点提供跳转链接(简单说就是提供了一个目录供大家选择自己想要的知识点可以直接跳转)关联的生信数据分析的分析点
- 单细胞转录组和表观组学图谱揭示效应、记忆和耗竭CD8 T细胞在不同细胞命运分化中的共享生物学特征(下篇)
Davey1220
文章信息文章题目:Longitudinalsinglecelltranscriptionalandepigeneticmappingofeffector,memory,andexhaustedCD8Tcellsrevealssharedbiologicalcircuitsacrossdistinctcellfates期刊:bioRxiv链接:https://www.biorxiv.org/cont
- Signac::EnhanceCoveragePlot 参考实现流程
倪桦
r语言Signaccoverageplot
Signac中的CoveragePlot是一种用于展示基因组覆盖度的图形工具,常用于ATAC-seq(AssayforTransposase-AccessibleChromatinusingsequencing)数据分析。它显示了特定基因组区域内测序读取的覆盖度,即每个位置上读取的频率。覆盖度图形对于理解基因组的开放区域、调控元件活性以及染色质状态等方面具有重要作用。通过将多个样本的Coverag
- 2022-01-14
Tree_microbiome
Tree_microbiome的博客_CSDN博客-微生物组测序数据可视化,微生物组测序分析领域博主(一)不同分类水平注释结果相对丰富度转化在微生物组测序中我们会从taxa_bar.qvz文件中下载到不同水平(level1,level2,level3……)的注释结果,一般我们用这些不同注释结果做微生物组的组成的堆积图,但是这些并不是相对丰富度,因此我们需要对其进行转换。以level-6属水平注释结
- NCBI BLAST+:分析生物内在编码的工具
belldeep
生物信息学Blast生物数据分析
在生物信息学的广阔领域中,NCBI(NationalCenterforBiotechnologyInformation,美国国立生物技术信息中心)开发的BLAST(BasicLocalAlignmentSearchTool,基本局部比对搜索工具)无疑是一把不可或缺的分析工具。NCBIBLAST+,作为其最新版本2.16.0+,为科研工作者提供了一套强大的序列比对和搜索功能,帮助解析生命现象背后的遗
- 【图论简介】
WA-自动机
图论深度优先算法架构后端前端面试
图论简介图论是一门数学分支,主要研究图(Graph)的性质、结构和应用。图论在计算机科学、网络理论、优化问题、生物信息学等多个领域都有广泛的应用。本文将简要介绍图论的基本概念、常见算法及其在实际中的应用。一、图的基本概念图(Graph):图是由一组顶点(Vertices)和连接顶点的边(Edges)组成的结构。可以表示为(G=(V,E)),其中(V)是顶点的集合,(E)是边的集合。根据边的不同属性
- 科研绘图系列:R语言单细胞差异基因四分图(Quad plot)
生信学习者2
R语言可视化r语言数据分析数据挖掘
介绍在单细胞分析领域,为了探究不同分组间同一细胞类型的基因表达差异,研究者们常采用四分图(QuadPlot)作为分析工具。该图形的横轴代表比较组1,而纵轴代表比较组2。通过这种布局,四分图能够有效地展示两组间共有的差异表达基因,从而为深入理解细胞类型在不同条件下的分子特性提供直观的视角。这种可视化方法不仅揭示了组间基因表达的异同,还有助于识别可能在生物学过程或疾病发生中起关键作用的基因。加载R包导
- 解惑深度学习中的困惑度Perplexity
Axlsss
深度学习统计知识深度学习人工智能数学建模
困惑度的定义困惑度(Perplexity)是衡量语言模型好坏的一个常用指标。语言模型(languagemodel)可以预测序列(比如一个句子)中每个时间步词元(比如一个句子中的逐个单词)的概率分布,继而计算一个序列的概率。一个好的语言模型应该有更高的概率生成一个好的序列,即生成的序列不应该让人感到很困惑,困惑度的核心思想是:序列生成的概率越大,其困惑度越小,因此可以使用困惑度这个指标来评估语言模型
- 使用clusterProfiler进行GO、KEGG富集分析(有参情况)
纪伟讲测序
寻找差异表达的基因并识别它们的功能,是我们进行RNA测序的最主要目的。很明显,这些差异的基因必然与功能改变密切相关,例如,比较患病个体与正常个体的组织表达谱,不难想到这些显著失调的基因参与了生物学过程、信号通路等,导致了疾病的发生。前面已经讲了如何使用DESeq2、edgeR基于转录组测序获得的基因表达值鉴定差异表达基因。那么,后续如何继续通过生信分析的方法,探索差异表达的基因发挥了怎样的功能,参
- 生信圆桌:专业生信服务器与平台服务的提供者
生信圆桌x生信云服务器
服务器人工智能运维
生信圆桌是一个专注于提供生物信息学(生信)服务器和平台服务的领先企业,致力于为全球科研机构、企业和独立研究者提供高性能的生信分析解决方案。随着生物信息学研究对计算资源的需求日益增加,生信圆桌凭借其先进的服务器技术和专业的服务团队,成为了生信领域中不可或缺的合作伙伴。访问生信圆桌,使用生信云。高效分析少走弯路www.tebteb.cc生信圆桌的核心服务高性能生信服务器定制:生信圆桌为客户提供定制化的
- 1区9+非肿瘤纯生信,逻辑清晰易懂,机器学习筛选关键基因的纯生信也可以发高水平期刊,抓紧上车!
生信小课堂
影响因子:9.186关于非肿瘤生信,我们也解读过很多,主要有以下类型1单个疾病WGCNA+PPI分析筛选hub基因。2单个疾病结合免疫浸润,热点基因集,机器学习算法等。3两种相关疾病联合分析,包括非肿瘤结合非肿瘤,非肿瘤结合肿瘤或者非肿瘤结合泛癌分析4基于分型的非肿瘤生信分析5单细胞结合普通转录组生信分析目前非肿瘤生信发文的门槛较低,有需要的朋友欢迎交流研究概述:本研究首先使用R语言在三个基因表达
- 论文阅读瞎记(四) Cascade R-CNN: Delving into High Quality Object Detection 2017
码大哥
深度学习人工智能
概述在物体检测中1,IOU阈值被用于判定正负样本。在低IOU阈值比如0.5的状态下训练模型经常产生噪音预测,然而检测效果会随着IOU增加而降低。两个主要因素:1.训练时的过拟合,正样本指数消失2.检测器最优IOU与输入假设的不匹配。一个单阶段的物体检测器CascadeR-CNN被提出用于解决这些问题。网络由一个检测序列组成,这些序列训练时会伴随IOU增长从而对FP样本更加有选择性地判别。检测器一个
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文