最小生成树

image.png

两种求最小生成树的算法

prime算法

基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。


image.png

image.png

image.png

image.png

image.png

image.png

image.png

Kruskal算法

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。


image.png

image.png

image.png

image.png

image.png

image.png

代码实现

package dataStructure.graph;

public class MatrixUDG {
    private int mEdgNum;//边的数量
    private char[] mVexs;//顶点集合
    private int[][] mMatrix;//邻接矩阵
    private static final int INF = Integer.MAX_VALUE;//最大值

    /**
     * 创建图
     * @param vexs --顶点数组
     * @param matrix --矩阵数据
     */
    public MatrixUDG(char[] vexs, int[][] matrix){
        this.mVexs = vexs;//初始化顶点
        this.mMatrix = matrix;//初始化矩阵

        //统计边:边有3种类型:0(自己到自己),数字(相邻边),INF(不是相邻边)
        int vlen = vexs.length;
        for(int i = 0; i < vlen; i++){
            for(int j = i + 1; j < vlen; j++){
                if(mMatrix[i][j] != INF){
                    mEdgNum++;
                }
            }
        }
    }

    /**
     * 返回在顶点的位置
     * @param ch
     * @return
     */
    private int getPosition(char ch){
        for(int i = 0; i < mVexs.length; i++){
            if(ch == mVexs[i]){
                return i;
            }
        }
        return -1;
    }

    /**
     * 打印邻接矩阵
     */
    private void print(){
        System.out.println("邻接矩阵:");
        for (int[] matrix : mMatrix) {
            for (int ch : matrix) {
                System.out.print(ch + " ");
            }
            System.out.println();
        }
    }

    /**
     * prime最小生成树算法
     */
    public void prime(int start){
        int num = mVexs.length;//顶点个数
        int[] weights = new int[num];//顶点间边的权重
        char[] prims = new char[num];//prime最小生成树的结果
        int index = 0;//prime数组的当前索引

        //第一个数是start顶点
        prims[index ++] = mVexs[start];

        //初始化权重
        for(int i = 0; i < num; i++){
            weights[i] = mMatrix[start][i];
        }
        weights[start] = 0;//自己到自己的权重为0


        for(int i = 0; i < num; i++){
            if(i == start){//由于从start开始不需要进行处理
                continue;
            }

            //从剩余的边中找到最小权重
            int min = INF;//最小权重
            int minIndex = 0;//最小权重所在的索引
            for(int j = 0; j < num; j++){
                if(weights[j] != 0 && weights[j] < min){//0表示已经加入最小权重
                    min = weights[j];
                    minIndex = j;
                }
            }

            //将最小权重加入到数组中,并设置为0
            prims[index++] = mVexs[minIndex];
            weights[minIndex] = 0;

            //更新其他权重的值:取双方权重值最小的
            for(int j = 0; j < num; j++){
                if(weights[j] != 0 && mMatrix[minIndex][j] < weights[j]){
                    weights[j] = mMatrix[minIndex][j];
                }
            }
        }

        //计算最小生成树的权重
        int sum = 0;
        for(int i = 1; i < index; i++){
            int min = INF;

            int n = getPosition(prims[i]);
            //求当前节点到上面其他节点的最小值
            for(int j = 0; j < i; j++){
                int m = getPosition(prims[j]);
                if(mMatrix[m][n] < min){
                    min = mMatrix[m][n];
                }
            }

            sum += min;
        }

        //打印最小生成树
        System.out.printf("PRIME(%c)=%d:", mVexs[start], sum);
        for(int i = 0; i < index; i ++){
            System.out.printf("%c ", prims[i]);
        }
        System.out.printf("\n");
    }

    /**
     * kruskal生成最小生成树
     */
    public void kruskal(){
        int index = 0;//结果数组的当前索引
        EData[] results = new EData[mEdgNum];//结果数组
        int[] vends = new int[mEdgNum];//保存的是某个顶点在该最小生成树的终点


        //获取图中所有的边
        EData[] edges = getEdges();

        //将边按权重从小到大排序
        sortEdges(edges);

        for(int i = 0; i < mEdgNum; i++){
            int p1 = getPosition(edges[i].start);
            int p2 = getPosition(edges[i].end);

            int m = getEnd(vends, p1);
            int n = getEnd(vends, p2);
            if(m != n){//表示没有形成闭环
                vends[m] = n;
                results[index++] = edges[i];
            }
        }

        //统计并打印最小生成树的信息
        int length = 0;
        for(int i = 0; i < index; i++){
            length += results[i].weight;
        }
        System.out.printf("kruskal=%d", length);

        for(int i = 0; i < index; i++){
            System.out.printf("(%c,%c) ", results[i].start,results[i].end);
        }
        System.out.printf("\n");
    }

    /**
     * 获取图中的边
     */
    private EData[] getEdges(){
        int index = 0;
        EData[] edges = new EData[mEdgNum];
        for(int i = 0; i < mVexs.length; i++){
            for(int j = i + 1; j < mVexs.length; j++){
                if(mMatrix[i][j] != INF){
                    edges[index++] = new EData(mVexs[i],mVexs[j],mMatrix[i][j]);
                }
            }
        }
        return edges;
    }

    /**
     * 根据权重大小排序(从小到大)
     * @param edges
     */
    private void sortEdges(EData[] edges){
        EData tmp;
        for(int i = 0; i < edges.length; i++){
            for(int j = (i + 1); j < edges.length; j++){
                if(edges[i].weight > edges[j].weight){//若大于则交换位置
                    tmp = edges[i];
                    edges[i] = edges[j];
                    edges[j] = tmp;
                }
            }
        }
    }

    /**
     * 取终点
     */
    private int getEnd(int[] vends, int i){
        //若C->D,D->F则取F的值
        while(vends[i] != 0){
            i = vends[i];
        }
        return i;
    }

    //边的数据结构
    private static class EData{
        char start;//边的起点
        char end;//边的终点
        int weight;//边的权重

        public EData(char start, char end, int weight) {
            this.start = start;
            this.end = end;
            this.weight = weight;
        }
    }

    public static void main(String[] args) {
        char[] vexs = {'A','B','C','D','E','F','G'};
        int[][] matrix = {
                //A    //B //C  //D  //E  //F //G
                {0,    12, INF, INF, INF, 16, 14}, //A
                {12,   0,  10,  INF, INF, 7,  INF}, //B
                {INF,  10, 0,   3,   5,   6,  INF}, //C
                {INF,  INF, 3,  0,   4,  INF, INF}, //D
                {INF,  INF, 5,  4,   0,   2,   8}, //E
                {16,    7,  6,  INF, 2,   0,   9}, //F
                {14,   INF, INF, INF, 8,  9,   0} //G
        };

        MatrixUDG matrixUDG = new MatrixUDG(vexs, matrix);
        matrixUDG.prime(0);//PRIME(A)=36:A B F E D C G
        matrixUDG.kruskal();//kruskal=36(E,F) (C,D) (D,E) (B,F) (E,G) (A,B)
    }
}

你可能感兴趣的:(最小生成树)