- AI图像技术:真实与虚假的博弈
XianxinMao
人工智能人工智能计算机视觉深度学习
标题:AI图像技术:真实与虚假的博弈文章信息摘要:随着AI生成图像技术的快速发展,虚假信息的传播风险急剧增加,引发了社会对信息真实性的广泛担忧。AI生成的图像几乎与真实照片无法区分,可能被用于制造虚假新闻、恶意攻击和商业欺诈,导致社会信任危机。为应对这一挑战,Meta开发了StableSignature技术,通过在AI生成图像中嵌入不可见且防篡改的水印,有效识别和追踪图像来源。这项技术具有鲁棒性、
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 太翌氏:学术理论生成与AI增强系统框架设计
太翌修仙笔录
源始学科deepseek知识图谱人工智能重构量子计算算法
刚才我引导你的过程,通过:提出假说→总结理论+推导公式=形成学术理论→理论性能提升测算/知识图谱突破率测算/知识图谱重购率测算→学术价值评估→个人认知维度水平评估,这一系列流程产生的文献,组成了一个新学术理论的最基础文献库,这个也可以作为一个知识库过滤生成器来使用,也可以提升Ai性能###**学术理论生成与AI增强系统框架设计**---####**一、系统架构总览****1.核心流程模块化**``
- 95% 向量资源节省,火山引擎云搜索 RAG 技术体系演进
字节跳动云原生计算
火山引擎搜索引擎算法
采访嘉宾|火山引擎云搜索团队鲁蕴铖、李杰辉、余炜强编辑|TinaInfoQ2023年,大模型惊艳了世界。2024年,RAG技术如日中天。RAG使得大模型能够在不更新模型参数的情况下,获得必要的上下文信息,从而减少大模型的幻觉。随着大型语言模型技术的不断成熟和行业应用的深入,人们对RAG系统的期望已经超越了对其“酷炫”效果的追求。企业和组织开始寻找更可靠、可扩展的RAG解决方案,以满足实际业务需求。
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- 【数据分享】2000~2020年基于站点观测的中国1km土壤湿度日尺度数据集
GIS遥感数据处理应用
人工智能大数据arcgis深度学习
各位同学们好,今天和大伙儿分享的是2000~2020年基于站点观测的中国1km土壤湿度日尺度数据集。如果大家有下载处理数据等方面的问题,您可以私信或评论。上官微,李清亮,石高松.(2022).基于站点观测的中国1km土壤湿度日尺度数据集(2000-2020).国家青藏高原数据中心.1数据简介本研究提供了中国范围1km高质量的土壤湿度数据集-SMCI1.0(SoilMoistureofChinaby
- BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
数据集
2024-11-29,由罗马尼亚布加勒斯特大学创建BioDeepAV数据集,它专门设计来评估最先进的深度伪造检测器在面对未见过的深度伪造生成器时的泛化能力,这对于提高检测器的鲁棒性和适应性具有重要意义。一、研究背景:随着生成模型的快速发展,深度伪造内容的逼真度不断提高,人们越来越难以在线检测出被操纵的媒体内容,从而容易受到各种诈骗的欺骗。这不仅对个人隐私构成威胁,也对社会信任和民主构成挑战。目前遇
- 自然语言处理领域CCF推荐的A类期刊
冰蓝蓝
自然语言处理人工智能
在自然语言处理(NLP)这一蓬勃发展的领域,研究人员和学者们致力于探索语言的深层含义和应用。中国计算机学会(CCF)推荐的A类期刊和会议是该领域内公认的高质量研究发表平台。这是我在学习时整理的一些顶刊并附上官网地址直达。1.ACL(AnnualMeetingoftheAssociationforComputationalLinguistics)ACL是自然语言处理领域的顶级会议之一,由Associ
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- LLM Weekly(2025.03.03-03.09)
UnknownBody
LLMDailyLLMWeekly语言模型人工智能
网络新闻QwQ-32B:拥抱强化学习的力量。研究人员推出了QwQ-32B,这是一个拥有320亿参数的模型,它利用强化学习来提升推理能力。尽管参数较少,但通过整合类似智能体的推理和反馈机制,QwQ-32B的表现可与更大规模的模型相媲美。该模型可在HuggingFace平台上获取。**人工智能领域的先驱安德鲁·巴托(AndrewBarto)和理查德·萨顿(RichardSutton)因对强化学习的开创
- PCL 点云迭代加权最小二乘法拟合平面(抑制噪声)
大鱼BIGFISH
点云进阶最小二乘法平面C++PCL迭代加权
文章目录一、简介二、实现代码三、实现效果参考资料一、简介受到之前博客的启发(Matlab点云最小二乘法拟合平面(剔除噪声)),我们不仅可以通过剔除一些异常点来拟合更为合适的平面,而且还可以在这个过程中对每个点进行加权来抑制噪声点,双管齐下也可以使得算法更具鲁棒性,并拟合出合适的平面,具体过程如下所示:1、首先使用加权的最小二乘法拟合一个平面系数的初值。2、计算所有有效点到拟合平面的距离did_i
- 仓储系统货位优化毕业论文【Flexsim仿真】
aikelele
人工智能
一、内容简介由堆垛机、货架、输送系统、管理系统、控制系统等组成的传统堆垛式仓储系统因为其成熟的技术和推广方式、高效等特点广泛的应用在物流、车间、制造等行业。但是堆垛机仓库每个巷道都会拥有一台堆垛机,其作业方式受到限制,鲁棒性比较差,一个巷道堆垛机出现问题题将导致整个巷道作业停止。同时,堆垛机立体仓库的可协调性比较差,企业的产品有旺季、淡季之分,在旺季时可能满足正常的出入库需求;在淡季时,可能会出现
- Deepseek:太翌氏混沌语言理论学术价值评估报告
太翌修仙笔录
deepseek超算法认知架构人工智能知识图谱agi
基于科学性和真实性的基础上,做一个太翌氏混沌语言理论学术价值评估报告###**太翌氏混沌语言理论学术价值评估报告**---####**一、理论概述****太翌氏混沌语言理论**提出了一种跨学科框架,通过将混沌动力学、量子物理、语言学及生命科学融合,利用特定频率的“混沌语言”干预物理系统与生命过程。其核心假设为:**语言结构可通过共振效应调制非线性系统的动力学行为**,进而实现量子态坍缩、生命场衰变
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 跨领域算法安全优化与可解释实践
智能计算研究中心
其他
内容概要作为系统性研究框架,《跨领域算法安全优化与可解释实践》从算法研发的全生命周期切入,重点解决多领域交叉应用中的核心矛盾。通过整合联邦学习的分布式架构与量子计算的高效特性,构建兼顾隐私保护与运算效率的算法优化范式,同时引入动态可解释性分析技术,为医疗影像诊断、金融风险预测等高敏感场景提供决策透明度保障。在技术路径层面,研究聚焦特征工程的鲁棒性设计、超参数的自适应调优策略,以及生成对抗网络在数据
- 家居巨头的觉醒,永洪科技为林氏家居开启一站式智慧决策
永洪科技
科技大数据人工智能数据分析数据可视化报表
在现代企业经营中,数据不仅是资产,更是决策的指南针。永洪科技与林氏家居的合作,是共同开发了一个企业级的一站式大数据分析平台。在合作多年的积累下,已逐步成为家居行业数字化转型的代表性案例。这不仅是两家企业间的合作,更是对于如何有效整合企业内部数据资产,支持各领域业务分析的一次深度实践。以下,我们将深入探讨该项目的每个关键阶段,展示永洪科技的专业能力和对潜在客户的价值承诺。广东林氏家居股份有限公司,创
- 池化的定义与核心思想
code 旭
AI人工智能学习pythonnumpy人工智能
一、池化的定义与核心思想定义:池化是卷积神经网络(CNN)中的一种下采样操作,用于降低特征图的空间维度(宽高),保留主要特征。核心目标:减少计算量:缩小特征图尺寸,降低后续层参数规模。增强模型鲁棒性:对微小平移、旋转等变化不敏感。防止过拟合:通过降维减少冗余信息。二、池化的数学公式1.最大池化(MaxPooling)取池化窗口内的最大值:yi,j=maxp=0kh−1maxq=0kw−1xi⋅
- 针对AF调试过程中PD多窗机制是如何打分的
爱写BUG的长歌
人工智能计算机视觉算法
在AF(自动对焦)调试中,PD多窗机制(PhaseDetectionMulti-Window)是提升相位对焦精度和鲁棒性的关键技术,其核心是通过在画面中划分多个相位检测窗口,分别计算各窗口的相位差(PhaseDifference)并进行综合评分,最终选择最优对焦位置。以下是其打分机制的核心逻辑和调试要点:1.多窗口布局与权重分配窗口划分根据Sensor的PDAF像素分布,将画面划分为多个区域(例如
- 深度学习:马氏距离
壹十壹
深度学习深度学习人工智能
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
- 太翌氏文化产业: AGI架构部署
太翌修仙笔录
deepseek第三代人工智能agi架构人工智能
在之前RGOA-重力算法等基础上,分析春秋历日盘排盘驱动行为的ai模式,是否达到AGI标准春秋历日盘排盘驱动行为的AI模式与AGI标准的对比分析一、RGOA-重力算法与春秋历日盘排盘的核心逻辑RGOA算法原理RGOA(GravitationalSearchAlgorithm)是一种基于物理引力定律的优化算法,通过模拟粒子在引力场中的运动来寻找最优解。其核心公式为:Fij=GmimjRij2+ϵ和a
- 欧拉筛(线性筛):找出所有小于等于给定整数n的质数的算法
日月知行
java算法数论基础
大体思路:与埃氏筛不同,埃氏筛(Java):找出所有小于等于给定整数n的质数的算法-CSDN博客欧拉筛不是把素数的所有倍数标记为非素数,而是每扫过一个数(这个数用外循环的i来表示,遍历isPrime数组)(无论这个数是素数还是非素数)将该数与前面标记为素数的数相乘的数筛掉(内循环进行更新真正的质数primes质数列表)。确保每个合数仅被其最小质因数标记一次,这样才能解决重复标记问题,时间复杂度降为
- 深度学习 PyTorch 中 18 种数据增强策略与实现
@Mr_LiuYang
计算机视觉基础数据增强深度学习torchvisiontransforms
深度学习pytorch之简单方法自定义9类卷积即插即用数据增强通过对训练数据进行多种变换,增加数据的多样性,它帮助我们提高模型的鲁棒性,并减少过拟合的风险。PyTorch提供torchvision.transforms模块丰富的数据增强操作,我们可以通过组合多种策略来实现复杂的增强效果。本文将介绍18种常用的图像数据增强策略,并展示如何使用PyTorch中的torchvision.transfor
- 在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
蚂蚁质量
软件测试matlab矩阵
在MATLAB环境中,对矩阵拼接(MatrixConcatenation)的正确性与鲁棒性开展测试时,需要依据不同的拼接场景精心设计测试用例,全面验证矩阵维度、数据顺序、边界条件以及异常处理等关键方面。以下是详尽的测试方法与具体示例:基础功能测试(1)水平拼接([A,B]或horzcat)测试目的:确认在列方向进行拼接后,所得矩阵的尺寸是否准确无误,以及数据排列顺序是否符合预期。测试代码:matl
- 语义检索-BAAI Embedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性
汀、人工智能
LLM工业级落地实践embeddinglangchain人工智能智能问答RAG检索增强生成大模型
语义检索-BAAIEmbedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性语义向量模型(EmbeddingModel)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型
- 面试时,如何回答好“你是怎么测试接口的?”
海姐软件测试
接口测试测试工具面试职场和发展postman
一、回答框架设计(金字塔原理)总述:"我通常采用分层测试策略,遵循需求分析→场景拆解→用例设计→自动化实施→持续监控的闭环流程。以最近测试的支付中台项目为例,核心围绕功能正确性、异常鲁棒性、安全防护、性能基线四个维度展开,下面详细说明各环节的关键动作……"二、分步骤技术解析(STAR法则)1.需求分析阶段-建立测试基准协议与文档解析:"首先确认接口协议类型(HTTP/GRPC/WebSocket等
- 复杂网络;社交网络;社区检测;节点重要性(重要节点识别);舆论动力学模型; 传染病模型 ;蓄意攻击 、随机攻击;网络鲁棒性、脆弱性、稳定性
xiao黄
复杂网络python复杂网络
复杂网络社交网络社区检测节点重要性(重要节点识别)舆论动力学模型传染病模型蓄意攻击随机攻击网络鲁棒性、脆弱性、稳定性Python基本的网络分析详细私聊网络拓扑图连通性网络效率下降
- 2024年图灵奖公布:两位AI先锋因强化学习获奖
吴脑的键客
人工智能人工智能chatgpt
据《纽约时报》报道,全球最大的计算机专业人士协会计算机协会(ACM)周三宣布,将2024年图灵奖授予安德鲁·巴托(AndrewBarto)博士和理查德·萨顿(RichardSutton)博士,以表彰他们在强化学习方面的研究。巴托目前是马萨诸塞大学荣誉退休教授。萨顿现在担任阿尔伯塔大学教授,他也是前DeepMind研究科学家。两人将分享图灵奖的100万美元奖金。图灵奖设立于1966年,常被称为“计算
- R语言绘图:韦恩图
善木科研
R语言r语言生信分析生物信息数据分析
韦恩分析韦恩分析(VennAnalysis)常用于可视化不同数据集之间的交集和并集。维恩图(Venndiagram),也叫文氏图、温氏图、韦恩图、范氏图,用于显示元素集合重叠区域的关系型图表,通过图形与图形之间的层叠关系,来反应数据集之间的相交关系。在R语言中,进行韦恩分析(Venn图绘制)可以通过多个不同的包来实现,常用的包括VennDiagram、venn和ggVenn等。本文案使用ggVen
- 手把手教你学simulink实例--基于Simulink的电动汽车智能驾驶辅助系统场景适应性与鲁棒性仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学SimulinkSIMULINK
目录基于Simulink的电动汽车智能驾驶辅助系统场景适应性与鲁棒性仿真基于Simulink的电动汽车智能驾驶辅助系统场景适应性与鲁棒性仿真1.背景介绍1.1项目背景随着自动驾驶技术的快速发展,智能驾驶辅助系统(ADAS,AdvancedDriverAssistanceSystems)在电动汽车中的应用越来越广泛。这些系统通过感知环境、规划路径和控制车辆来提高
- 太翌氏计算机工程蓝图
太翌修仙笔录
deepseek太翌氏格物致知方法论人工智能重构量子计算
###**太翌氏计算机(TaiyiComputingSystem,TCS)工程蓝图**---####**一、核心架构总览***图示说明:三维分形拓扑结构,中心为「太上核心」,辐射出「灵宝量子通道」与「源始流形网络」*---####**
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag