- 中小制造企业必看!MES管理系统破解车间管理四大难题指南
深蓝易网
数字工厂制造人工智能大数据运维devops
在制造业竞争日益激烈的今天,生产车间的低效与混乱已成为制约企业发展的关键瓶颈。计划频繁变更、异常频发、资源浪费等问题不仅导致成本攀升,更直接影响订单交付与客户信任。如何实现生产透明化、管理精细化?MES系统(制造执行系统)凭借其数据驱动与全流程协同能力,正成为企业突破困局的利器。本文将从四大核心痛点切入,深度解析MES管理系统的破局之道。痛点一:计划脱离实际,排产如同“盲人摸象”传统排产模式下,计
- 基于腾讯云大模型知识引擎与DeepSeek的沉浸式历史文化体验系统实践
lijiek
腾讯云microsoft云计算
前言文化遗产数字化保护与传播是当今科技与人文交汇的重要领域。传统的数字化方法往往局限于静态展示,无法实现真正的互动体验。本文将探索一条创新路径:利用腾讯云大模型知识引擎(LKE)与DeepSeek模型构建沉浸式历史文化体验系统,实现与历史人物的"对话"、历史场景的"复原",以及文化知识的智能传播。作为实践案例,我们以中国古代科技成就为切入点,打造了一个可交互的"古代科技馆",让用户能够与张衡、祖冲
- 2025年首个!又一家智驾供应链企业成功上市,踩准感知红利风口
高工智能汽车
人工智能汽车
3月18日,弘景光电在深交所创业板正式挂牌上市,成为了2025年开年首家成功上市的智能汽车供应链企业。弘景光电作为一家专业从事光学镜头及摄像模组产品的研发、设计、生产和销售的高新技术企业,已深耕行业十多年,目前其产品应用领域主要包括智能汽车汽车及新兴消费两大领域,其中车载光学镜头产品主要应用于智能座舱和智能驾驶系统。在过去的几年中,弘景光电抓住车载光学镜头和新兴消费电子市场的巨大增长机会,业绩实现
- 使用DeepSeek R1大模型编写迅投 QMT 的量化交易 Python 代码
wtsolutions
qmt量化交易pythonqmtdeepseek量化交易代码生成
随着人工智能技术的迅猛发展,利用AI工具提升工作效率已成为现代开发者的重要手段。在使用deepseek官方网页生成迅投QMT代码的时候,deepseek给出的代码是xtquant代码,也就是miniqmt代码,并不是我们传统意义上说的大QMT可用的代码。因此,我们需要自建一个知识库,让deepseek根据我的知识库里面的知识,去帮我生成大QMT可用的交易代码。一、建立迅投QMT的知识库建立迅投QM
- Deepseek API 调用
哦豁灬
LLM深度学习生产工具deepseekLLMAPI大模型
1获取APIKey目前比较知名的提供了DeepSeek的推理服务商包括硅基流动、阿里云、腾讯云等等。这些推理服务商一般是提供API接口,需要安装大模型客户端并配置API。获取API密钥,以硅基流动为例:前往硅基流动官方网站(https://cloud.siliconflow.cn)注册账号。在账户管理的API密钥中点击新建API密钥并复制。安装一个本地的第三方大模型客户并配置,常见的包括Chatb
- vLLM 部署大模型
哦豁灬
深度学习LLM人工智能vLLM大模型部署LLM
1介绍vLLM是来自UCBerkeley的LMSYS在LLM推理方面的最新工作(没错就是搞出Vicuna的那个group),最大亮点是采用PagedAttention技术,结合ContinuousBatching,极大地优化了realtime场景下的LLMserving的throughput与内存使用。vllmgithub仓库1.1安装安装命令:pip3installvllm#vllm==0.2.
- springboot 项目如何提高并发量
LCY133
spring后端springbootjava后端
提升基于SpringBoot的Web项目并发量需要从应用优化、数据库调优、缓存策略、异步处理、水平扩展等多方面综合改进。以下是具体方案和实践建议:一、应用层优化1.代码性能优化•避免阻塞操作:减少同步锁、长事务、大文件处理等耗时操作。•优化SQL查询:避免N+1查询,使用索引,减少全表扫描。•复用对象:避免频繁创建大对象(如JSON解析工具),使用线程安全对象池。2.线程池配置•调整Web服务器线
- docker学习整理
24k小善
java大数据云计算
一、Docker核心原理:像租房装修一样理解容器1.1容器vs虚拟机:合租vs买别墅虚拟机就像买别墅:每个别墅(虚拟机)自带独立地基(操作系统)、水电系统(系统资源),启动慢(分钟级)、资源占用大(GB级)[1][10]容器就像合租:大家共享小区基础设施(宿主机内核),但每个房间(容器)有自己的家具摆放(应用和依赖)。轻量(MB级)、秒级启动,还能随时搬走(迁移)[9]1.2镜像分层:乐高积木式打
- 使用 Argilla 进行大语言模型数据管理与监控
qahaj
语言模型python人工智能
技术背景介绍Argilla是一个开源的数据管理平台,专为大语言模型(LLMs)设计。它旨在通过快速的数据管理以及结合人类和机器的反馈,帮助开发者构建更强大的语言模型。同时,Argilla支持整个MLOps周期的每个步骤,从数据标注到模型监控。核心原理解析Argilla的核心优势在于其灵活的数据管理流程和强大的反馈机制。通过Argilla,开发者可以实时监控模型性能,并根据需要调整数据标注策略。这种
- java毕业设计,网上商城系统
爱编程的小哥
java毕设java课程设计springbootvue
️OnlineMall商城系统全解析|Vue3+SpringBoot全栈实战(附高并发与数据安全方案)一、系统架构全景基于七张效果图分析,该系统是企业级电商综合管理平台,采用SpringBoot3+Vue3+ElementPlus+MyBatisPlus技术栈,覆盖商品管理、订单处理、会员运营等核心场景。通过RBAC权限控制+Elasticsearch搜索+分布式事务三大技术亮点,支持10万级商品
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略
一个处女座的程序猿
资深文章(前沿/经验/创新)DataScienceML数据科学数据科学的生命周期机器学习
DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略导读:本文章是博主在数据科学和机器学习领域,先后实战过几百个应用案例之后的精心总结,应该是完全覆盖了数据科学的整个生命周期及其各个阶段的要点。其中机器学习领域六大阶段更是在整个数据科学生命周期中扮演着极其重要的角色。同时,因为涉及到博主出书中出版社要求在
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- MySQL 8.0新特性深度解析:窗口函数与JSON数据处理的10大技巧
墨瑾轩
一起学学数据库【一】mysqljson
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣第1章:MySQL8.0简介嗨,亲爱的小伙伴们!欢迎来到MySQL8.0的奇妙世界,这里充满了新鲜和惊喜。MySQL8.0是一个数据库界的超级英雄,它带着一系列令人兴奋的新特性,比如窗口函数和JSON数据处理,来拯救我们的数据处理任务。1.1MySQL8.0的
- HarmonyOS5开发:手把手教你用 Ark-TS UI 做一个会 “动” 的计数器:从代码到原理全解析
harmonyos-next
今天咱们用鸿蒙5的Ark-TSUI做一个简单又有趣的计数器应用。点击按钮数字就会增加,而且界面还能自动更新。通过这个案例,你能轻松理解Ark-TSUI的核心玩法。一、最终效果长什么样?打开应用,你会看到一个大按钮,上面写着“点击加1”。每次点击按钮,按钮上方的数字就会变大。比如第一次点击变成“1”,第二次变成“2”,依此类推。整个过程不需要手动刷新页面,数字会自动变化。二、完整代码长这样types
- 运用IC-CAP软件对射频集成电路的表征与参数分析
Keep-Follow
课程设计
摘要本文聚焦于运用IC-CAP软件对射频集成电路进行全面表征与参数分析。详细阐述IC-CAP软件在该领域的功能特性,通过具体的射频集成电路案例,深入介绍使用软件进行直流参数测试、小信号S参数分析、大信号特性表征的流程与方法。探讨如何依据分析结果优化射频集成电路性能,展现软件在助力电路设计、提升产品质量方面的关键作用,为射频集成电路研发工程师提供极具价值的技术参考。关键词IC-CAP软件;射频集成电
- android发送自定义广播
Android洋芋
android
简介在Android中,自定义广播(CustomBroadcasts)主要用于应用程序内部或不同应用程序之间的通信。它们是Android四大组件之一——BroadcastReceiver——的主要功能之一。自定义广播在以下场景中尤其有用:组件间通信:应用程序的不同部分(如不同的Activity、Service或BroadcastReceiver)之间可以使用自定义广播来传递信息。例如,当一个Act
- 微软 LIDA 库:基于大模型的自动化数据分析与可视化
窝窝和牛牛
microsoft数据分析
微软LIDA库:基于大模型的自动化数据分析与可视化一、核心架构与LLM交互流程调用LLM生成数据摘要基于LLM推理分析目标LLM生成可视化代码结合图像生成模型优化原始数据Summarizer模块结构化摘要GoalExplorer模块可视化目标列表VizGenerator模块可执行图表代码Infographer模块风格化信息图表二、LLM交互核心功能1.多模型支持架构兼容主流LLM服务商:通过统一接
- Linux下文件名中文乱码导致无法访问的问题解决方法
无级程序员
linux文件名乱码
一个基于openwrt路由器做文件服务器,硬盘里面有些文件的中文名乱码了,导致无法打开,也无法复制,想改名也无法操作,怎么办呢,网上搜了一大圈,都是说如何转换乱码,但文件都无法访问了,怎么转换?比如其中一个文件名是:“IVItripsummaryV1.0❁´◡`❁.xlsx",我试着如下命令发现能唯一的找到它:ls"IVItripsummaryV1.0"*于是,试着改名:mv"IVItripsum
- 算法设计与分析4(变治法)
songx_99
算法设计与分析算法
变治法将问题转化为一个或数个有一定关联当形式上不同的更加简单或更加好解决的子问题。变治法的应用:预排序思想用预排序可以简化许多问题,如检查元素唯一性,检查出现次数最多的元素等堆算法堆的定义首先它是一个完全二叉树,完全二叉树表明树的每一层都是满的,只有最后一层最右边的元素有可能缺位。且父结点的值大于它的两个子节点,则称是一个大根堆,若值小于两个子节点,称小根堆堆化有向下调整,向上调整两种,大致思路相
- 逐行讲解大模型解码超参数大全(temperature、top-k、top-p等所有参数)
Gaffey大杂烩
大模型机器学习人工智能
目录简介宏观概览解码策略实现逻辑常见的解码超参数temperature温度系数top_ktop_prepetition_penalty重复惩罚不常见的解码超参数min_ptypical解码ϵ采样η采样Classifier-FreeGuidance(CFG)序列偏置干预HammingDiversity编码器重复惩罚n-gram重复惩罚编码器n-gram重复惩罚bad_token惩罚最小长度限制最小新
- 如何用Function Calling解锁OpenAI的「真实世界」交互能力?(附Node.js 实战)
hongkid
AI编程
一、FunctionCalling:大模型的「手脚延伸器」1.1核心定义FunctionCalling是OpenAI在2023年6月13日推出的革命性功能(对应模型版本gpt-3.5-turbo-0613和gpt-4-0613),允许开发者通过自然语言指令触发预定义函数,实现大模型与现实世界系统的交互。如同给语言模型安装「手脚」,使其不仅能思考,还能执行具体操作。openai官方说明:https:
- 复习Linux的常用指令
一直开心
linux常用指令的学习笔记
https://zhuanlan.zhihu.com/p/385065437https://zhuanlan.zhihu.com/p/385065437参考:tar指令的学习linux常用命令(2):tar命令(压缩文件/解压缩文件)_tar压缩-CSDN博客zip指令的学习Linuxzip命令|菜鸟教程tar的工作过程主要分为两个步骤,正向是打包与压缩,反向是解压缩与还原。打包指的是将一大堆文件
- 解析大模型归一化:提升训练稳定性和性能的关键技术
秋声studio
口语化解析深度学习人工智能大模型归一化
引言在深度学习领域,特别是在处理大型神经网络模型时,归一化(Normalization)是一项至关重要的技术。它可以提高模型的训练稳定性和性能,在加速收敛方面发挥了重要作用。本文将深入探讨大模型归一化的原理、常见方法及其应用场景,并结合实际案例和代码示例进行说明。一、归一化的作用与理论基础归一化的主要目的是为了提高模型的训练稳定性和性能。具体来说,归一化有以下几个关键作用:提高训练稳定性:在神经网
- Java 大视界 -- Java 大数据在智能医疗远程会诊与专家协作中的技术支持(146)
青云交
大数据新视界Java大视界java大数据智能医疗远程会诊专家协作数据安全病例诊断
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- CBNet--一种新的目标检测的复合骨干网体系结构
weixin_45963617
深度学习系列
一、Introduction一般来说,在一个典型的基于CNN的目标检测器中,使用主干网络来提取检测对象的基本特征,该网络通常是为图像分类任务而设计的,并在ImageNet上预训练。毫无疑问,更强大的主干网可以带来更好的检测性能。尽管最先进的基于深度的大骨干网络的探测器取得了很好的结果,但仍有很大改进空间。此外,通过设计一个新的更强大的主干网络并在ImageNet上预训练来获取好的检测性能是十分昂贵
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- 使用Ollama部署开源大模型
好好学习 666
开源
Ollama是一个简明易用的本地大模型运行框架,可以一键启动启动并运行Llama3、Mistral、Gemma和其他大型语言模型。安装MacOS,Windows用户直接在官网下载页下载安装包即可。Linux系统运行如下命令安装curl-fsSLhttps://ollama.com/install.sh|sh使用Usage:ollama[flags]ollama[command]AvailableC
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- AI巨浪中的安全之舵:天空卫士助力人工智能落地远航
天空卫士
人工智能安全数据安全网络安全大数据
"AI时代的安全战场,不在云端在本地;数据治理的胜负手,不在防御在认知。"近期,众多企业纷纷接入DeepSeek大模型,迅速推动了大型模型应用的广泛铺开。无论是在制造业、金融业,还是在医疗、教育等领域,DeepSeek大模型的应用都如火如荼,遍地开花,展现出了其广泛的应用前景和巨大的商业价值。顺势而来的是DeepSeek一体机以"低成本、高算力、私有化部署"的优势席卷企业市场。因为DeepSeek
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比