- 9 万天价激活码?手把手教你免费申请 Manus 邀请码!
前端后花园
前端热门开源项目人工智能ManusAI
Manus爆火,继国产大模型的DeepSeek后又一个国产之光。它是AIagent,可以帮你规划旅游行程、分析股票、做课程PPT、做数据分析报告等等。现在激活码难求,某鱼上炒到了9w了。某鱼上还有代申请Manus账号的单子,实在看不下去了,写一篇如何免费申请Manus邀请码的教程,防止大家被割韭菜。方式一:官网申请最靠谱的办法了,ManusAI官方发布公告了,创始人承诺会优先让waitlist中的
- 保姆级教程:阿里QwQ-32B模型本地部署与企业级应用实战(附万字指南+工具链)
emmm形成中
AI科技前沿pythonjavaai人工智能
保姆级教程:阿里QwQ-32B模型本地部署与企业级应用实战(附万字指南+工具链)目录QwQ-32B核心优势与技术突破本地部署全攻略:从环境配置到模型运行六大企业级应用场景深度解析实战案例:数学推理/代码生成/Agent能力测试常见问题与性能优化指南2025年技术展望与行业影响核心优势1.1模型技术突破维度QwQ-32B特性传统大模型对比参数规模320亿参数(仅需16GB显存)DeepSeek-R1
- DeepSeek开源周:面向大模型训练的三个工具包
花生糖@
AIGC学习资料库DeepSeek实用集DualPipeEPLBProfile-dataDeepseek
在2025年的开源周中,DeepSeek推出了一系列旨在优化大规模模型训练效率的工具。这些工具包括DualPipe、EPLB以及Profile-data,它们分别从不同的角度解决了万亿参数模型训练中的算力瓶颈问题,为行业带来了前所未有的加速和效率提升。DualPipe:双向流水线架构的创新DualPipe通过其首创的双向流水线架构,极大地提高了计算与通信的重叠率至92%,相比NVIDIAMegat
- 还在蹲Manus的邀请码?别等了!开源版Manus为你快速创建AI工位,给AI一台电脑,然后你就玩去吧!
蚝油菜花
每日AI项目与应用实例开源人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->尽在微信公众号->搜一搜:蚝油菜花就在昨天,一个叫做Manus的AIAgent平台在各大社媒和社区火速的传播开来,引发了各界火热的讨论,相信大家也看到了不少关于Manus的实测和评价了。可当大家跃跃欲试冲
- DeepSeek开源第一弹!突破H800性能上限,FlashMLA重磅开源
开源项目精选
人工智能
FlashMLA是一个针对HopperGPU优化的高效MLA(Multi-HeadLatentAttention)解码内核,支持变长序列处理,现在已经投入生产使用。FlashMLA通过优化MLA解码和分页KV缓存,能够提高LLM(大语言模型)推理效率,尤其是在H100/H800这样的高端GPU上发挥出极致性能。说人话就是,FlashMLA是一种专门为Hopper高性能AI芯片设计的先进技术——一种
- MindSearch: 革新人工智能搜索引擎的未来
2401_87189860
人工智能搜索引擎
MindSearch:革新人工智能搜索引擎的未来在人工智能和大语言模型快速发展的今天,搜索引擎领域正迎来新的变革。由上海人工智能实验室开发的MindSearch项目,正是这场变革中的佼佼者。MindSearch是一个开源的AI搜索引擎框架,它通过模仿人类思维过程,为用户提供深度的AI搜索能力。本文将深入探讨MindSearch的特点、工作原理以及它对未来搜索技术的影响。MindSearch的核心特
- Python 冒泡排序
2301_80891383
pythonpython开发语言算法
defbubble_sort(lst):n=len(lst)#遍历所有列表元素foriinrange(n):#每次遍历后,最后的i个元素已经排好序,因此不需要再检查forjinrange(0,n-i-1):#如果当前元素比下一个大,交换它们iflst[j]>lst[j+1]:lst[j],lst[j+1]=lst[j+1],lst[j]returnlst#接收输入并转换为列表data_list=l
- 信奥赛CSP-J复赛集训(模拟算法专题)(11):P1420 最长连号
王老师青少年编程
算法csp信奥赛c++数据结构模拟算法gesp
信奥赛CSP-J复赛集训(模拟算法专题)(11):P1420最长连号题目描述输入长度为nnn的一个正整数序列,要求输出序列中最长连号的长度。连号指在序列中,从小到大的连续自然数。输入格式第一行,一个整数nnn。第二行,nnn个整数aia_iai,之间用空格隔开。输出格式一个数,最长连号的个数。输入输出样例#1输入#1101562345689输出#15说明/提示数据规模与约定对于100%100\%1
- WBC已形成“东亚-美洲双中心”格局·棒球1号位
棒球1号位
人工智能学习
世界棒球经典赛(WBC)作为全球最高水平的国家队棒球赛事,参赛队伍按实力、地域和历史表现可分为多个“阵营”。以下是基于历届赛事(截至2023年)的阵营划分及代表性队伍分析:第一阵营:传统豪强(争冠级别)代表队伍:日本(3次冠军:2006、2009、2023)特点:细腻战术+顶级投手群,大谷翔平、达比修有等MLB巨星压阵。优势:青训体系完善,国内职棒(NPB)水平仅次于MLB。美国(1次冠军:201
- Spring Boot在java领域中有哪些优势
ios
哈喽,大家好呀,淼淼又来和大家见面啦,随着云计算、微服务架构的兴起,Java开发领域迫切需要一套高效、灵活且易于上手的框架来应对日益复杂的业务需求。正是在这样的背景下,SpringBoot应运而生,以其独特的魅力迅速成为了Java开发者手中的利器。这一期淼淼将深入剖析SpringBoot在Java领域中的十大显著优势,揭示它为何成为现代软件开发不可或缺的一部分。1.零配置起航:约定优于配置Spri
- 5分钟理解依赖注入和控制反转
laraveljavaphp
基本的解释想必打开这篇文章的人,对依赖注入和控制反转都有了大致的概念。简单的说:控制反转是依赖注入的实现。举一个例子男人A要找女朋友,他可以去网聊、去夜店、去酒吧等等各种地方碰运气,花钱花时间。这是一种找女朋友的方法,也是很多人的做法。男人B要找女朋友,他年纪大了没有那么多时间和精力在这方面花费气力,直接去相亲。这是很多大龄青年找女朋友的方法,也就是今天想说的方法。简单的说明假设以上例子就是找女朋
- 新手必看——ctf六大题型介绍及六大题型解析&举例解题
沛哥网络安全
web安全学习安全udp网络协议
CTF(CaptureTheFlag)介绍与六大题型解析一、什么是CTF?CTF(CaptureTheFlag),意为“夺旗赛”,是一种信息安全竞赛形式,广泛应用于网络安全领域。CTF竞赛通过模拟现实中的网络安全攻防战,让参赛者以攻防对抗的形式,利用各种信息安全技术进行解决一系列安全问题,最终获得“旗帜(Flag)”来获得积分。CTF赛事一般分为两种形式:Jeopardy(解题模式):参赛者通过解
- Phi-4-multimodal:图、文、音频统一的多模态大模型架构、训练方法、数据细节
余俊晖
大语言模型多模态LLM多模态
Phi-4-Multimodal是一种参数高效的多模态模型,通过LoRA适配器和模式特定路由器实现文本、视觉和语音/音频的无缝集成。训练过程包括多阶段优化,确保在不同模式和任务上的性能,数据来源多样,覆盖高质量网络和合成数据。它的设计体现了小型语言模型在多模态任务上的潜力模型架构Phi-4-Multimodal的基础是Phi-4-Mini语言模型,这是一个3.8亿参数的模型,设计为高效处理文本任务
- 算法学习系列(四十五):DFS之剪枝与优化
lijiachang030718
算法深度优先算法学习c++剪枝程序人生笔记
目录引言DFS之剪枝与优化一、小猫爬山二、木棒三、数独四、总结引言关于这个DFSDFSDFS的剪枝和优化确实难度是非常的大,从我这篇文章的思路和代码量上就能看出来不是一般的难度,而且难度不亚于DPDPDP,而且这个DFSDFSDFS也是花费了我三天的时间才基本把这几道例题给搞懂了,并且这种题就是没有固定的模型和套路,每个题都不一样,只有你多做题,这样在考场上才能想到这道题好像跟之前做过的题有点相似
- 在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?
玩人工智能的辣条哥
人工智能人工智能LoRA微调
环境:LoRA微调问题描述:在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?解决方案:在LoRA(Low-RankAdaptation)微调大模型后,提升和优化推理效果可以从以下多维度策略入手,涵盖数据、模型架构、训练策略和后处理技术等方面:1.数据优化数据质量与多样性确保微调数据覆盖目标场景的多样性,避免分布偏差。加入领域相关的高质量数据,清洗噪声数据(如重复、矛盾样本)。
- 3 小时精通 Python 玩转 Excel:自动化办公实战案例大揭秘
七七知享
Pythonexcel自动化python办公爬虫运维人工智能
在当今快节奏的办公环境下,掌握高效的办公技能成为提升工作效率的关键。Python作为一门强大且易于上手的编程语言,在自动化办公领域发挥着巨大的作用,尤其是在处理Excel数据方面。你是否渴望摆脱繁琐重复的Excel操作,让电脑自动帮你完成数据处理任务?现在,只需要3小时,就能学会用Python处理Excel及实现各种自动化办公小案例,大幅提升工作效率。接下来,让我们一同开启这趟神奇的Python自
- springboot中的观察者模式
stayhungerstayflush
spring基础介绍springboot观察者模式后端
SpringBoot中的观察者模式与消息通信机制深度解析引言在现代分布式系统中,模块解耦和高效通信是系统设计的核心挑战。SpringBoot通过其强大的事件驱动模型,为开发者提供了优雅的观察者模式实现方案。本文将深入剖析其实现原理,并通过实战案例展示如何构建松耦合、高扩展的分布式系统。核心机制解析1.观察者模式在Spring中的实现Spring事件模型基于发布-订阅模式,包含三大核心组件:Appl
- 大模型微调:定义、方法、应用与未来展望
软件职业规划
easyui前端javascript
一、定义与意义(一)微调的定义大模型微调是指在预训练模型的基础上,通过特定领域的数据集对模型进行进一步训练的过程。预训练模型通常在大规模的通用数据上进行训练,学习到广泛的知识和语言模式,但这些知识往往缺乏针对性。例如,在自然语言处理中,预训练模型可能无法准确理解特定领域的专业术语或逻辑。通过微调,模型可以学习到特定领域的特征和规律,从而在特定任务上表现出更高的专业性和准确率。微调的过程可以被视为一
- 深挖JVM隐藏优化点与百万QPS系统调优【突破认知:JVM内存管理的9大反直觉真相】通过三个违背‘常识‘的调优策略,将GC停顿时间从1.2秒降至80ms,节省40%服务器成本
王大师王文峰
jvm服务器运维
本人详解作者:王文峰,参加过CSDN2020年度博客之星,《Java王大师王天师》公众号:JAVA开发王大师,专注于天道酬勤的Java开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯山峯转载说明:务必注明来源(注明:作者:王文峰哦)深挖JVM隐藏优化点与百万QPS系统调优【突破认知:JVM内存管理的9大反直觉真相】通过三个违背'常识'的调优策略,将GC停顿时
- 大模型中的剪枝、蒸馏是什么意思?
玩人工智能的辣条哥
人工智能剪枝人工智能机器学习
环境:剪枝蒸馏问题描述:大模型中的剪枝、蒸馏是什么意思?解决方案:大模型的剪枝(Pruning)和蒸馏(Distillation)是两种常见的模型优化技术,用于减少模型的大小和计算复杂度,同时尽量保持模型的性能。这两种技术在实际应用中非常重要,尤其是在资源受限的环境中(如移动设备或边缘计算)。1.剪枝(Pruning)定义剪枝是一种模型压缩技术,通过移除模型中不重要的权重或神经元来减少模型的大小和
- 大模型: 流式会话的实现方式
玉成226
【大模型】java-ee
文章目录一、什么是流式会话二、长轮询(LongPolling)三、WebSocket1、特定2、工作原理3、使用场景四、Server-SentEvents(SSE)1、特点2、工作流程3、使用场景4、OkHttpClient-sse五、gPRC流六、HTTP/2流一、什么是流式会话流式会话(StreamedConversation)指的是在人机交互的过程中,以流的形式进行信息传输,而不是将信息一次
- 9.3 智谱AI大模型生态爆发!中文准确率89.2%+代码生成67.3%,全面碾压GPT-4!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能语言模型gpt
智谱AI大模型生态爆发!中文准确率89.2%+代码生成67.3%,全面碾压GPT-4!1.WebGLM:联网检索增强大模型智谱AI于2022年推出的WebGLM是基于GLM-10B打造的检索增强生成(RAG)模型,其创新性地将大语言模型与搜索引擎深度整合,构建了独特的四阶段处理架构:
- Oracle数据库深度优化实战指南:从SQL到架构的全维度调优
AAEllisonPang
jvm
目录性能优化方法论1.1性能优化黄金三角(SQL/实例/架构)1.2常用诊断工具全景图(AWR/ASH/SQLMonitor)SQL语句调优实战2.1执行计划深度解析2.2全表扫描灾难案例2.3绑定变量陷阱解决方案索引优化策略3.1索引失效七大场景3.2函数索引实战应用实例参数优化4.1内存管理核心参数4.2连接风暴抑制方案架构设计优化5.1分区表设计陷阱5.2物化视图加速案例统计信息管理6.1统
- 深度集成DeepSeek与Java开发:智能编码新纪元全攻略 [特殊字符]
添砖Java中
开发语言javamavenspringbootdeepseek
一、DeepSeek:Java开发者的第二大脑1.1传统开发痛点VS智能开发体验传统开发DeepSeek智能辅助效率提升对比手动编写重复代码一键生成模板代码代码量减少70%↑调试全靠断点日志智能定位缺陷根源问题排查时间缩短60%↓文档维护耗时费力自动生成更新文档文档编写效率提升5倍↑性能优化依赖经验数据驱动的优化建议系统吞吐量提高30%↑新框架学习曲线陡峭实时生成最佳实践示例上手速度加快50%↑二
- 深入解析模型蒸馏(Knowledge Distillation):原理、方法与优化策略
赵大仁
AI大语言模型人工智能人工智能深度学习神经网络机器学习自然语言处理
深入解析模型蒸馏(KnowledgeDistillation):原理、方法与优化策略1.引言随着深度学习模型规模的不断增长,训练和部署大模型的计算成本也越来越高。模型蒸馏(KnowledgeDistillation,KD)是一种广泛使用的模型压缩与优化技术,通过让一个小模型(StudentModel)学习大模型(TeacherModel)的知识,使其能够在保持高准确度的同时降低计算复杂度,从而提升
- 数据结构——堆
乘风上菜
数据结构算法
定义:堆(Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵完全二叉树的数组对象。故通常我们用完全二叉树来维护一个一维数组。分类:按照堆的特点可以把堆分为大根堆和小根堆大根堆:每个结点的值都大于或等于其左右孩子结点的值小根堆:每个结点的值都小于或等于其左右孩子结点的值二叉树的性质:对于具有n个结点的完全⼆叉树,如果按照从上⾄下从左⾄右的数组顺序对所有结点从0开始编号,则对
- LLM大模型技术实战4:热门开源LLMs对比和选型
大模型学习教程
机器学习开源人工智能职场和发展
一、大语言模型的特点和能力LLM(LargeLanguageModel,大型语言模型)是指那些规模庞大、参数数量众多的深度神经网络模型,用于理解和生成自然语言文本。在自然语言处理(NLP)领域有着广泛的应用,因其强大的语言理解和生成能力,能够处理各种复杂的文本任务。1.1主要特点架构特点LLM主要基于Transformer架构,Transformer通过自注意力机制(Self-Attention)
- 大模型面试--大模型(LLMs)基础面
TAICHIFEI
大模型面试语言模型人工智能
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?目前主流的开源大模型体系有以下几种:1.Transformer系列Transformer模型是深度学习中的一类重要模型,尤其在自然语言处理(NLP)领域。以下是一些主流的Transformer模型:GPT系列GPT-2和GPT-3:由OpenAI开发的生成式预训练变换器模型,用于生成高质量的文本。GPT-Neo和GPT-J:由Eleuthe
- 【存储中间件】Redis核心技术与实战(一):Redis入门与应用(技术全景、版本选择与安装、全局命令)
道友老李
架构师进阶-存储中间件Redis核心技术与实战中间件redis数据库
文章目录Redis入门与应用Redis的技术全景两大维度三大主线Redis的版本选择与安装**Redis的linux安装**Redis的启动默认配置带参数启动配置文件启动操作停止Redis全局命令键名的生产实践个人主页:道友老李欢迎加入社区:道友老李的学习社区Redis入门与应用Redis的技术全景Redis一个开源的基于键值对(Key-Value)NoSQL数据库。使用ANSIC语言编写、支持网
- Java 大视界 -- 基于 Java 的大数据可视化交互设计与实现技巧(105)
青云交
大数据新视界Java大视界java信息可视化可视化交互EChartsThree.js实时渲染AR可视化
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比