- 2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用)
面包资料屋
考研数学
2022考研数学李永乐复习全书pdf版-基础篇(数一二三通用):https://pan.baidu.com/s/1tK9cPPG5Q-xhasqb051ymQ提取码:1111本书是专门为准备参加硕士研究生入学考试提前复习的大二大三学生、在职考研人士及基础薄弱的考生编写。本书以初等数学水平为起点,阐述了考研数学要求的基本知识构架。希望本书能够帮助考生在短时间内厘清考研数学(包括高等数学、线性代数、概
- 极限求解方法小结
垚武田
数学学习
本文总结了同济版《高等数学》第一章中的极限求解的方法。注:下文中的limx\lim\limits_{x}xlim代表对于limx→x0\lim\limits_{x\tox_0}x→x0lim或者limx→∞\lim\limits_{x\to\infty}x→∞lim都成立无穷大与无穷小第4节,定理2:无穷大的倒数为无穷小,即limxf(x)=∞⇒limx1f(x)=0\lim_{x}f(
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- 终于做了一个决定
不吃老鼠的喵
终于做了一个决定,让自己再求学路上再走远一些,然而没有赶告诉身边任何人,一个人默默的进行,怕被嘲笑,怕考不上。然而当我翻开高数习题的时候,还是一脸懵逼了,高等数学,线性代数。指数函数,无界函数都是几个鬼,仿佛没读过大学一样从新开始。开始信心满满的,看到这个立马被憋回去了。高数不行,就从英语开始,入学测试磕磕绊绊的做完了,也不知道能得多少分,还好身在企业的我这些年没把英语荒废了。接下来就是政治和专业
- 高等数学精解【12】
未来之蓝
基础数学与应用数学线性代数数值优化数据压缩高等数学算法
文章目录无损压缩算法常见算法概述1.**霍夫曼编码(HuffmanCoding)**2.**Lempel-Ziv-Welch(LZW)**3.**游程编码(Run-LengthEncoding,RLE)**4.**算术编码(ArithmeticCoding)**5.**DEFLATE**6.转换编码(TransformCoding)7.预测编码(PredictiveCoding)转换编码的无损压缩
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 如何理解三大微分中值定理
感知gcs
算法
文章看原文,自己写的只是备份高等数学强化2:一元函数微分学中值定理极值点拐点_一元函数中值定理-CSDN博客高等数学强化3:一元函数积分学P积分-CSDN博客高等数学强化3:定积分几何应用-CSDN博客
- 育儿|博士“虎爸”逼8岁儿学高数 母亲申请人身保护令
SHIAN孖
近日一则新闻火了,的确让人很上火:博士毕业的毛某经常向8岁儿子、5岁女儿教授中学、大学的知识,让两孩子学习文言文和高等数学,并要求两子女学习至深夜,其在教育子女学习的过程中经常使用侮辱性字眼进行谩骂,有时甚至出现殴打行为。在众人的协调下,毛某认为其管教孩子仅为“家务事”,拒绝协调。因子女的教育问题,亦严重影响了夫妻感情。最终对薄公堂,法院作出裁定:禁止父亲毛某对郑某、小明、小佳及其相关近亲属实施家
- Python在高等数学和线性代数中的应用
学习不止,掉发不停
数学建模python
Python数学实验与建模学习目录1.SymPy工具库1.1符号运算基础1.2用SymPy做符号函数画图2.高等数学的符号解2.1极限2.2导数2.3级数求和2.4泰勒展开2.5不定积分和定积分2.6代数方程2.7微分方程3.高等数学问题的数值解3.1一重积分3.1.1梯形计算3.1.2辛普森计算3.2多重积分3.3非线性方程数值解3.3.1二分法求根3.3.2牛顿迭代法求根3.3.3scipy工
- 【微积分/高等数学】无穷级数 之 和函数的快速求法(九阴真经)
啵啵啵啵哲
高等数学笔记其他经验分享
本笔记资料中的方法是考研数学王谱老师的“九阴真经”,对于求和函数的题可快速解决.现将笔记分享出来,也方便自己翻阅笔记.前言此类题目的出题方式一般为给出无穷级数,要求写出和函数及收敛域.本笔记中的方法是先记住常用的九个无穷级数(不妨称其为“标准型”),对于具体题目,可先将原级数进行因式分解等操作,然后化作九种标准型的和、差即可快速写出和函数.对于收敛域的求法,则可根据阿贝尔判别法求出收敛区间,再对区
- 多看书一定是好事吗?我觉得未必,关键在于你
上善若水游戏人生
说到看书学习,大家第一印象就是博览群书的人,一定是很了不起。的确了不起的人绝大多都是博览群书,但是博览群书的人未必就了不起。我觉得我们无论处在哪个阶段,所处的环境如何,或者说所在某一个时空,都需要满足天时地利人和三才,方能圆满。比如小学时期,你就让小朋友努力去学高等数学,或者对小朋友的期许过高,让他们完成这个年龄段几乎不可能完成的事情。那不是帮他,而是在害他。我知道同学,他从小就不断学各种各样的知
- 【深度学习】前向传播和反向传播(四)
Florrie Zhu
深度学习之基础知识深度学习神经网络反向传播前向传播
文章目录前向传播反向传播总结写在最前面的话:今天要梳理的知识点是深度学习中的前/反向传播的计算,所需要的知识点涉及高等数学中的导数运算。在深度学习中,一个神经网络其实就是多个复合函数组成。函数的本质就是将输入x映射到输出y中,即f(x)=yf(x)=yf(x)=y,而函数中的系数就是我们通过训练确定下来的,那么如何训练这些函数从而确定参数呢?这就涉及网络中的两个计算:前向传播和反向传播。前向传播前
- 又断了一天
静竟
2019.3.5星期二了,离考试时间越来越近有一点担忧虽说是通过性考试但总想努力做到最好比较担心科目三,毕竟是高等数学和线性代数只能说加油!今天要换一个发型,换一个心情微笑着面对总有拨开云雾见青天的时候所以过好当下吧
- 高等数学基础
Geniusvisionary
学习方法
高等数学预备知识一、函数的概念与特性1.函数的定义2.反函数的定义2.1反函数的充分条件3.复合函数的定义3.1复合函数的求导4.函数的4中特性4.1有界性4.2单调性4.3奇偶性4.3.1对称性4.4周期性二、函数的图像1.直角坐标系1.1基本初等函数与初等函数1.2分段函数1.3图像变换2.极坐标系2.1描点法画图2.2用直角系观点画极坐标系的图像3.参数法三、常用基础知识1.数列2.三角函数
- Pytorch 复习总结 1
ScienceLi1125
pythonpytorchpython
Pytorch复习总结,仅供笔者使用,参考教材:《动手学深度学习》本文主要内容为:Pytorch张量的常见运算、线性代数、高等数学、概率论。Pytorch张量的常见运算、线性代数、高等数学、概率论部分见Pytorch复习总结1;Pytorch线性神经网络部分见Pytorch复习总结2;Pytorch多层感知机部分见Pytorch复习总结3;Pytorch深度学习计算部分见Pytorch复习总结4;
- 每日复盘总结day 27
文章正在刷新中
备考科目:英语、高等数学、政治、电子技术倒计时:47天一、我今天的计划是(做了什么)?(1)上午:看新闻时事(2)下午:数学中值定理(3)晚上:读了一篇外刊,然后看40min小视频,接着看电子技术基础视频二、我今天没做好什么?(1)不规则动词还没背,等等睡前复习(2)英语作文还没有看三、我今天有哪些收获?我今天有哪些想法?我是一个比较容易受外界影响的,有时看到身边的人伤心哭了,我也会心情被影响的,
- 神经网络(Nature Network)
栉风沐雪
深度学习神经网络人工智能深度学习
最近接触目标检测较多,再此对最基本的神经网络知识进行补充,本博客适合想入门人工智能、其含有线性代数及高等数学基础的人群观看1.构成由输入层、隐藏层、输出层、激活函数、损失函数组成。输入层:接收原始数据隐藏层:进行特征提取和转换输出层:输出预测结果激活函数:非线性变换损失函数:衡量模型预测结果与真实值之间的差距2.正向传播过程基础的神经网络如下图所示,其中层1为输入层,层2为隐藏层,层3为输出层:每
- 高等数学第一章函数与极限03
考研数学吧
高等数学第一章函数与极限03“如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。”----高斯
- UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0xa6 in position 34: illegal multibyte sequence
何为xl
python乱码pythongbk
python读取TXT文件时出现错误withopen(r'高等数学.txt')asfile_object:contents=file_object.read()print(contents)报错:原因:Unicode的解码(Decode)出现错误(Error)了,以gbk编码的方式去解码(该字符串变成Unicode),但是此处通过gbk的方式,却无法解码(can’tdecode)。“illegal
- 2020年考研数学(二)网授精讲班
出牛不惜
课程学时:65活动学资学习网时间11月11日止,考研资料低至几元,http://xzw.100xuexi.com视频数量:68下载次数:593播放次数:15437更新时间:2019.10.09【网授课程】1.同济大学《高等数学》网授精讲班第一章函数与极限(1)01:07:28第一章函数与极限(2)00:53:21第一章函数与极限(3)00:39:40第一章函数与极限(4)00:41:49第一章函数
- 阿诺尔德论数学教育
高梵1991
从分析的角度而言,从牛顿、莱布尼兹的时代开始,物理与数学就是紧密结合的;普通人眼中的数学,大概也由于微积分的普及特别是被冠以高等数学的名字,成了微积分的代名词;另一方面,分析的种种分支,也表现出极强的生命力,成为数学中极其重要的一大部分。阿诺尔德的观点我觉得要这么理解:数学不应该与物理造成那么深的隔阂。这是很有道理的。作为数学,我们应该知道东西是怎么来的,它的原来的问题是什么样的,虽然从数学来讲它
- 最早玩双十一的那批人,才是薅羊毛大赛的冠军
二叁叁叁
“你昨晚花了多少钱?”“花到没钱。”双十一早就不是以前单纯善良的双十一了,想要搞懂它,不会点pua社会学高等数学心理学经济学,今年都入不了门。从昨晚,你就应该知道,这不是一场简单的战争——院办的狗友从早上开始打开excel,列满自己要买的东西,啥时候领啥红包,怎样才能凑够满减,还有一列是跟京东比比领完各种优惠券以后谁便宜——虽然是简单的加减乘除但算起来不比求导函数简单但今天付了钱以后发现,还是比别
- 2020-03-01
joker_luo
考研复习大纲数学三月~六月初(一轮复习)复习目标:过一遍考研数学一的全部内容(包括高等数学上,下,概率论,线性代表)。复习用书:李永乐复习全书,汤家凤1800题。时间安排:4.10左右结束高数5.10左右结束线性代数6月初结束概率论复习计划:复习以复习用书,课本为主,复习视频为辅助(原则上以1.25倍观看且每天视频时间不能超过2小时)。主要通过观看视频理解基本概念,结合全书以及基础题加深理解。六月
- 【GAMES101】Lecture 16 蒙特卡洛积分
MaolinYe(叶茂林)
GAMES101图形渲染games101
为了后面要讲的路径追踪,需要讲一下这个蒙特卡洛积分,同时需要回顾一下高等数学中的微积分和概率论与统计学的知识目录微积分概念论与统计蒙特卡洛积分微积分定积分是微积分中的一种重要概念,用于计算函数在一个区间上的总体积、总面积或总量,对于一个实函数f(x),定积分可以表示为∫[a,b]f(x)dx,其中[a,b]是积分区间,f(x)是被积函数,dx表示与自变量x相关的微小增量不定积分是微积分中的一种概念
- 数学与计算机(1)- 高等数学
astuv
pythonmatlabmatplotlibnumpyscipy
(原文:https://blog.iyatt.com/?p=12906)1工具1.1Python基础工具Python3.11.2数学模块SymPy1.12SciPy1.11.4NumPy1.26.3ScientificPython(SciPy)是一个基于NumPy的数值计算库,而SymbolicPython(SymPy)是一个符号计算库。交互工具JupyterNotebook7.0.6JN具有笔记
- 每日一记(95)忽略也是一种智慧
相信未来_3257
美国社会学家威廉姆•詹姆士说:“智慧就是懂得该忽略什么的技巧”。读到这句话的时候,我的内心为之一颤。是呀,一个智慧的老师该忽略掉某些事情。忽略一些不影响正常上课的行为小A是个学习成绩很优秀的孩子,但是他有一个不好的习惯,就是上课喜欢偷看课外书。她学了很多知识,虽然才六年级,但是她会背初中所有古诗文,懂得高等数学,还通晓历史知识。课堂上老师讲解的知识点她已经掌握了,这时,我就不会再勉强她,只要不发出
- 生活的幸福感
海娟620
今天工作之余和我师傅闲聊,他突然和我说:我是个特别无趣的人。先介绍下我师傅:博士毕业,现在高校任职,教授级,校外兼职做项目,师母也是博士,高校任职,儿子在上外市上重点初中,家有老人。我感觉很奇怪,在我看来,他是我认识的为数不多的学术性和实际应用都很牛的高校老师,高等数学,各种计算都能驾驭,而且上知天文下知地理,总之,他是我仰视的存在。也许是这几天的工作遇到了瓶颈。师傅和我说:他不是个好丈夫:回家后
- 25考研|660/880/1000/1800全年带刷计划
Czz-coder
考研
作为一个参加过两次研究生考试的老学姐,我觉得考研数学的难度完全取决于你自己我自己就是一个很好的例子21年数学题目是公认的简单,那一年考130+的很多,但是我那一年只考了87分。但是22年又都说是有史以来最难的一年,和20年的难度不相上下,但是我却可以考129分上岸。经历过两次考研,我觉得考研数学之所以难,有下面几点原因:1、知识点多,考研数学1和数学3都包含三本书,分别是高等数学,线性代数和概率论
- 牛頓—偉大的學者,低劣的人品
蓉儿102209
众所周知,牛顿是伟大的物理学家,他发现了物理学著名的三定律:惯性定律、质量加速度定律、作用力和反作用力定律。直到今天,在任何一套中学物理教科书中,都能找得到牛顿物理三定律。宇宙万有引力定律也是他发现的。高中数学中的二项式定理也冠以牛顿的名字。高等数学中有个最著名的公式,叫做"牛顿莱布尼兹公式"。牛顿的名头不可谓不响啊。说牛顿是近代伟大的物理学家,恐怕没有人会有疑义,但是这个伟大的物理学家,却有着低
- 我是一个从小学就开始数学不及格的人,却被逼着学了高等数学。
山妻
大学似乎并不似想象中那样美好。印象深刻是的小学时候,语文老师同我们说,“大学将会是你们最幸福的时光,那时候的自由是现在你们无法想象与感受的。那四年一定是人生路上最绚烂的时光。”于是乎,出于对语文老师博览群书的敬佩,我在心底悄悄地对大学布满了渴望。再后来,大学成了逃离高考的象牙塔,以为只要努力考上了,以后就轻松了,我可以带着好奇与期盼,卸下重重考试排名下的压力,远走高飞。然而可惜的是,现实永远不会给
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla