等差数列和等比数列 常用公式

等差数列

定义

a_{n+1}-a_{n}=d


通项公式

a_{n}=a_{1}+\left ( n-1 \right )d

a_{n}=a_{m}+(n-m)d


公差

d=\frac{a_{n}-a_{1}}{n-1}\left ( n\neq 1 \right )

d=\frac{a_{n}-a_{m}}{n-m}(n\neq m)


前n项和公式

S_{n}=\frac{n(a_{1}+a_{n})}{2}=na_{1}+\frac{n(n-1)}{2}d


中项公式

A=\frac{a+b}{2}


下标:m+n=p+q,则

a_{m}+a_{n}=a_{p}+a_{q}


等比数列

定义

\frac{a_{n+1}}{a_{n}}=q


通项公式

a_{n}=a_{1}q^{n-1}

a_{n}=a_{m}q^{n-m}


公比

q^{n-1}=\frac{a_{n}}{a_{1}}

q^{n-m}=\frac{a_{n}}{a_{m}}


前n项和公式

S_{n}=\frac{a_{1}(1-q^{n})}{1-q}=\frac{a_{1}-a_{n}q}{1-q}(q\neq 1)

S_{n}=na_{1}(q=1)


中项公式

G=\pm \sqrt{ab}(ab>0)


下标:m+n=p+q,则

a_{m}a_{n}=a_{p}a_{q}

你可能感兴趣的:(傅立叶分析)