时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测

时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测

目录

    • 时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测_第1张图片
时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测_第2张图片

时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测_第3张图片

时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测_第4张图片

时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测_第5张图片
时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测_第6张图片
时序预测 | MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测_第7张图片

基本介绍

ICEEMDAN-IMPA-LSTM功率/风速预测 基于改进的自适应经验模态分解+改进海洋捕食者算法+长短期记忆网络时间序列预测~组合预测
1.分解时避免了传统经验模态分解的一些固有缺陷,效果更佳,并通过改进的海洋捕食者算法对LSTM四个参数进行寻优,最后对每个分量建立LSTM模型进行预测后叠加集成,全新组合预测,出图多且精美~
2.改进点如下:
通过一个新的自适应参数来控制捕食者移动的步长,并使用非线性参数作为控制参数来平衡NMPA的探索和开发阶段,有效提高其搜索精度与收敛速度。
直接替换excel数据即可用 适合新手小白
附赠案例数据 可直接运行

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现ICEEMDAN-IMPA-LSTM时间序列预测
function [modes,its]=iceemdan(x,Nstd,NR,MaxIter,SNRFlag)
x=x(:)';
desvio_x=std(x);
x=x/desvio_x;

modes=zeros(size(x));
temp=zeros(size(x));
aux=zeros(size(x));
iter=zeros(NR,round(log2(length(x))+5));

for i=1:NR
    white_noise{i}=randn(size(x));%creates the noise realizations
end;

for i=1:NR
    modes_white_noise{i}=emd(white_noise{i});%calculates the modes of white gaussian noise
end;

for i=1:NR %calculates the first mode
    xi=x+Nstd*modes_white_noise{i}(1,:)/std(modes_white_noise{i}(1,:));
    [temp, o, it]=emd(xi,'MAXMODES',1,'MAXITERATIONS',MaxIter);
    temp=temp(1,:);
    aux=aux+(xi-temp)/NR;
    iter(i,1)=it;
end;

modes= x-aux; %saves the first mode
medias = aux;
k=1;
aux=zeros(size(x));
es_imf = min(size(emd(medias(end,:),'MAXMODES',1,'MAXITERATIONS',MaxIter)));

while es_imf>1 %calculates the rest of the modes
    for i=1:NR
        tamanio=size(modes_white_noise{i});
        if tamanio(1)>=k+1
            noise=modes_white_noise{i}(k+1,:);
            if SNRFlag == 2
                noise=noise/std(noise); %adjust the std of the noise
            end;
            noise=Nstd*noise;
            try
                [temp,o,it]=emd(medias(end,:)+std(medias(end,:))*noise,'MAXMODES',1,'MAXITERATIONS',MaxIter);
            catch    
                it=0; disp('catch 1 '); disp(num2str(k))
                temp=emd(medias(end,:)+std(medias(end,:))*noise,'MAXMODES',1,'MAXITERATIONS',MaxIter);
            end;
            temp=temp(end,:);
        else
            try
                [temp, o, it]=emd(medias(end,:),'MAXMODES',1,'MAXITERATIONS',MaxIter);
            catch
                temp=emd(medias(end,:),'MAXMODES',1,'MAXITERATIONS',MaxIter);
                it=0; disp('catch 2 sin ruido')
            end;
            temp=temp(end,:);
        end;
        aux=aux+temp/NR;
    iter(i,k+1)=it;    
    end;
    modes=[modes;medias(end,:)-aux];
    medias = [medias;aux];
    aux=zeros(size(x));
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

你可能感兴趣的:(时序预测,ICEEMDAN,IMPA-LSTM,时间序列预测)