【考研数学】概率论与数理统计 —— 第四章 | 随机变量的数字特征

文章目录

  • 一、随机变量的数学期望
    • 1.1 概念
      • 1. 一维离散型随机变量的数学期望
      • 2. 一维连续型随机变量的数学期望
      • 3. 二维离散型随机变量的数学期望
      • 4. 二维连续型随机变量的数学期望
    • 1.2 数学期望的性质
  • 二、随机变量的方差
    • 2.1 概念
    • 2.2 计算公式
    • 2.3 方差的性质
    • 2.4 常见随机变量的数学期望与方差
      • 1. 常见离散型随机变量的数学期望与方差
      • 2. 常见连续型随机变量的数学期望与方差
  • 三、随机变量的协方差与相关系数
    • 3.1 概念
    • 3.2 协方差的计算公式
    • 3.3 协方差与相关系数的性质


一、随机变量的数学期望

1.1 概念

1. 一维离散型随机变量的数学期望

X X X 为离散型随机变量,其分布律为 P { X = x i } = p i ( i = 1 , 2 , ⋯   ) , P\{X=x_i\}=p_i(i=1,2,\cdots), P{X=xi}=pi(i=1,2,), 若级数 ∑ i = 1 ∞ x i p i \sum_{i=1}^{\infty}x_ip_i i=1xipi 绝对收敛,称级数 ∑ i = 1 ∞ x i p i \sum_{i=1}^{\infty}x_ip_i i=1xipi 的和为随机变量 X X X 的数学期望,记为 E ( X ) E(X) E(X) ,即 E ( X ) = ∑ i = 1 ∞ x i p i E(X)=\sum_{i=1}^{\infty}x_ip_i E(X)=i=1xipi

设随机变量 Y = u ( x ) Y=u(x) Y=u(x) ,且级数 ∑ i = 1 ∞ u ( x i ) p i \sum_{i=1}^{\infty}u(x_i)p_i i=1u(xi)pi 绝对收敛,称级数 ∑ i = 1 ∞ u ( x i ) p i \sum_{i=1}^{\infty}u(x_i)p_i i=1u(xi)pi 的和为随机变量 Y Y Y 的数学期望。

2. 一维连续型随机变量的数学期望

X X X 为连续型随机变量,其概率密度为 f ( x ) f(x) f(x) ,若广义积分 ∫ − ∞ ∞ x f ( x ) d x \int_{-\infty}^{\infty}xf(x)dx xf(x)dx 绝对收敛,称 ∫ − ∞ ∞ x f ( x ) d x \int_{-\infty}^{\infty}xf(x)dx xf(x)dx 为随机变量 X X X 的数学期望,记为 E ( X ) E(X) E(X) ,即 E ( X ) = ∫ − ∞ ∞ x f ( x ) d x . E(X)=\int_{-\infty}^{\infty}xf(x)dx. E(X)=xf(x)dx. 对于随机变量 Y = u ( X ) Y=u(X) Y=u(X) ,有和 1. 中离散型类似的结论。

3. 二维离散型随机变量的数学期望

设二维离散型随机变量 ( X , Y ) (X,Y) (X,Y) 的联合分布律为 P { X = x i , Y = y i } = p i j ( i = 1 , 2 , ⋯   ; j = 1 , 2 , ⋯   ) , P\{X=x_i,Y=y_i\}=p_{ij}(i=1,2,\cdots;j=1,2,\cdots), P{X=xi,Y=yi}=pij(i=1,2,;j=1,2,), Z = u ( X , Y ) Z=u(X,Y) Z=u(X,Y) ,若 ∑ i = 1 ∞ ∑ j = 1 ∞ u ( x i , y i ) p i j \sum_{i=1}^{\infty}\sum_{j=1}^\infty u(x_i,y_i)p_{ij} i=1j=1u(xi,yi)pij 绝对收敛,其和为随机变量 Z Z Z 的数学期望,即 E ( Z ) = ∑ i = 1 ∞ ∑ j = 1 ∞ u ( x i , y i ) p i j . E(Z)=\sum_{i=1}^{\infty}\sum_{j=1}^\infty u(x_i,y_i)p_{ij}. E(Z)=i=1j=1u(xi,yi)pij.

4. 二维连续型随机变量的数学期望

( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量,其联合密度函数为 f ( x , y ) f(x,y) f(x,y) ,又 Z = u ( X , Y ) Z=u(X,Y) Z=u(X,Y) ,若广义积分 ∫ − ∞ ∞ d x ∫ − ∞ ∞ u ( x , y ) f ( x , y ) d y \int_{-\infty}^\infty dx\int_{-\infty}^{\infty}u(x,y)f(x,y)dy dxu(x,y)f(x,y)dy 绝对收敛,称其为随机变量 Z Z Z 的数学期望,即 E ( Z ) = ∫ − ∞ ∞ d x ∫ − ∞ ∞ u ( x , y ) f ( x , y ) d y . E(Z)=\int_{-\infty}^\infty dx\int_{-\infty}^{\infty}u(x,y)f(x,y)dy. E(Z)=dxu(x,y)f(x,y)dy.

规律还是很明显的,离散型用级数,连续型用积分。

1.2 数学期望的性质

性质 1 —— E ( C ) = C , E ( k X ) = k E ( X ) , E ( X + Y ) = E ( X ) + E ( Y ) . E(C)=C,E(kX)=kE(X),E(X+Y)=E(X)+E(Y). E(C)=C,E(kX)=kE(X),E(X+Y)=E(X)+E(Y).

性质 2 —— 设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn n n n 个存在数学期望的随机变量, k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn n n n 个常数,则 E ( k 1 X 1 + k 2 X 2 + ⋯ + k n X n ) = k 1 E ( X 1 ) + k 2 E ( X 2 ) + ⋯ + k n E ( X n ) . E(k_1X_1+k_2X_2+\cdots+k_nX_n)=k_1E(X_1)+k_2E(X_2)+\cdots+k_nE(X_n). E(k1X1+k2X2++knXn)=k1E(X1)+k2E(X2)++knE(Xn).

性质 3 —— 设随机变量 X , Y X,Y X,Y 相互独立,则 E ( X Y ) = E ( X ) ⋅ E ( Y ) . E(XY)=E(X)\cdot E(Y). E(XY)=E(X)E(Y).
证明: 不妨设 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量,其联合密度函数为 f ( x , y ) f(x,y) f(x,y) ,由独立可知, f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x,y)=f_X(x)\cdot f_Y(y) f(x,y)=fX(x)fY(y) ,则有 E ( X Y ) = ∫ − ∞ ∞ d x ∫ − ∞ ∞ x y f ( x , y ) d y = ∫ − ∞ ∞ x f X ( x ) d x ∫ − ∞ ∞ y f Y ( y ) d y = E ( X ) ⋅ E ( Y ) . E(XY)=\int_{-\infty}^\infty dx\int_{-\infty}^\infty xyf(x,y)dy=\int_{-\infty}^\infty xf_X(x)dx\int_{-\infty}^\infty yf_Y(y)dy=E(X)\cdot E(Y). E(XY)=dxxyf(x,y)dy=xfX(x)dxyfY(y)dy=E(X)E(Y).


二、随机变量的方差

2.1 概念

X X X 为随机变量,若 E { [ X − E ( X ) ] 2 } E\{[X-E(X)]^2\} E{[XE(X)]2} 存在,称其为随机变量 X X X 的方差,记为 D ( X ) D(X) D(X) ,即 D ( X ) = E { [ X − E ( X ) ] 2 } , D(X)=E\{[X-E(X)]^2\}, D(X)=E{[XE(X)]2}, D ( X ) \sqrt{D(X)} D(X) 为随机变量 X X X 的均方差或标准差。

2.2 计算公式

定理 1 —— 设 X X X 为随机变量,且 E ( X ) , E ( X 2 ) E(X),E(X^2) E(X),E(X2) 均存在,则有 D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E(X^2)-[E(X)]^2 D(X)=E(X2)[E(X)]2
证明: 由方差定义, D ( X ) = E { [ X − E ( X ) ] 2 } = E { X 2 − 2 X E ( X ) + [ E ( X ) ] 2 } = E ( X 2 ) − 2 E ( X ) E ( X ) + [ E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E\{[X-E(X)]^2\}=E\{X^2-2XE(X)+[E(X)]^2\}=E(X^2)-2E(X)E(X)+[E(X)]^2=E(X^2)-[E(X)]^2 D(X)=E{[XE(X)]2}=E{X22XE(X)+[E(X)]2}=E(X2)2E(X)E(X)+[E(X)]2=E(X2)[E(X)]2 ,即可得到原命题。

记住 E ( X ) E(X) E(X) 是一个常数。

对任意随机变量 X X X ,总有 D ( X ) ≥ 0 D(X)\geq 0 D(X)0 。因为方差实质还是数学期望,从可以看出,方差是一系列非负值的数学期望,自然也是非负的。

2.3 方差的性质

性质 1 —— D ( C ) = 0 , D ( a X + b ) = a 2 D ( X ) . D(C)=0,D(aX+b)=a^2D(X). D(C)=0,D(aX+b)=a2D(X).

性质 2 —— 若 X , Y X,Y X,Y 相互独立,有(1) D ( a X + b Y ) = a 2 D ( X ) + b 2 D ( Y ) D(aX+bY)=a^2D(X)+b^2D(Y) D(aX+bY)=a2D(X)+b2D(Y) ;(2) D ( X Y ) ≥ D ( X ) D ( Y ) D(XY)\geq D(X)D(Y) D(XY)D(X)D(Y)

2.4 常见随机变量的数学期望与方差

1. 常见离散型随机变量的数学期望与方差

【考研数学】概率论与数理统计 —— 第四章 | 随机变量的数字特征_第1张图片

2. 常见连续型随机变量的数学期望与方差

【考研数学】概率论与数理统计 —— 第四章 | 随机变量的数字特征_第2张图片

三、随机变量的协方差与相关系数

3.1 概念

1. 两个随机变量协方差的概念

X , Y X,Y X,Y 为随机变量,且存在 D ( X ) , D ( Y ) D(X),D(Y) D(X),D(Y) ,称 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } E\{[X-E(X)][Y-E(Y)]\} E{[XE(X)][YE(Y)]} 为随机变量 X , Y X,Y X,Y 的协方差,记为 C o v ( X , Y ) Cov(X,Y) Cov(X,Y) ,即 C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } . Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\}. Cov(X,Y)=E{[XE(X)][YE(Y)]}. 2. 两个随机变量相关系数的概念

X , Y X,Y X,Y 为随机变量, X , Y X,Y X,Y 的方差存在且 D ( X ) > 0 , D ( Y ) > 0 D(X)>0,D(Y)>0 D(X)>0,D(Y)>0 ,称 ρ X Y = C o v ( X , Y ) D ( X ) ⋅ D ( X ) \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\cdot\sqrt{D(X)}} ρXY=D(X) D(X) Cov(X,Y) 为随机变量 X , Y X,Y X,Y 的相关系数,其中

(1)若 ρ X Y = − 1 \rho_{XY}=-1 ρXY=1 ,称随机变量 X , Y X,Y X,Y 负相关;
(2)若 ρ X Y = 0 \rho_{XY}=0 ρXY=0 ,称随机变量 X , Y X,Y X,Y 不相关;
(1)若 ρ X Y = 1 \rho_{XY}=1 ρXY=1 ,称随机变量 X , Y X,Y X,Y 正相关。

3.2 协方差的计算公式

X , Y X,Y X,Y 为随机变量,且存在 E ( X ) , E ( Y ) , E ( X Y ) E(X),E(Y),E(XY) E(X),E(Y),E(XY) ,则 C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) . Cov(X,Y)=E(XY)-E(X)E(Y). Cov(X,Y)=E(XY)E(X)E(Y). 证明: 根据协方差定义, C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = E { X Y − X E ( Y ) − Y E ( X ) + E ( X ) E ( Y ) } = E ( X Y ) − E ( Y ) E ( X ) − E ( X ) E ( Y ) + E ( X ) E ( Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\}=E\{XY-XE(Y)-YE(X)+E(X)E(Y)\}=E(XY)-E(Y)E(X)-E(X)E(Y)+E(X)E(Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E{[XE(X)][YE(Y)]}=E{XYXE(Y)YE(X)+E(X)E(Y)}=E(XY)E(Y)E(X)E(X)E(Y)+E(X)E(Y)=E(XY)E(X)E(Y)

3.3 协方差与相关系数的性质

性质 1 —— C o v ( X , X ) = D ( X ) , C o v ( X , Y ) = C o v ( Y , X ) ; Cov(X,X)=D(X),Cov(X,Y)=Cov(Y,X); Cov(X,X)=D(X),Cov(X,Y)=Cov(Y,X);

性质 2 —— C o v ( k X , Y ) = C o v ( X , k Y ) = k C o v ( X , Y ) ; Cov(kX,Y)=Cov(X,kY)=kCov(X,Y); Cov(kX,Y)=Cov(X,kY)=kCov(X,Y);

性质 3 —— 若 X , Y X,Y X,Y 相互独立,则 C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0 ,但反之不对。

性质 4 —— 设 X , Y 1 , Y 2 , ⋯   , Y n X,Y_1,Y_2,\cdots,Y_n X,Y1,Y2,,Yn 为随机变量, k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn n n n 个常数,则 C o v ( X , k 1 Y 1 + k 2 Y 2 + ⋯ + k n Y n ) = k 1 C o v ( X , Y 1 ) + ⋯ + k n C o v ( X , Y n ) . Cov(X,k_1Y_1+k_2Y_2+\cdots+k_nY_n)=k_1Cov(X,Y_1)+\cdots+k_nCov(X,Y_n). Cov(X,k1Y1+k2Y2++knYn)=k1Cov(X,Y1)++knCov(X,Yn). 性质 5 —— ∣ ρ X Y ≤ 1 ∣ |\rho_{XY}\leq 1| ρXY1∣ ,其中

(1) ρ X Y = 1 \rho_{XY}=1 ρXY=1 的充分必要条件是 P { Y = a X + b } = 1 ( a > 0 ) ; P\{Y=aX+b\}=1(a>0); P{Y=aX+b}=1(a>0);
(2) ρ X Y = − 1 \rho_{XY}=-1 ρXY=1 的充分必要条件是 P { Y = a X + b } = 1 ( a < 0 ) ; P\{Y=aX+b\}=1(a<0); P{Y=aX+b}=1(a<0);
(1) ρ X Y = 0 \rho_{XY}=0 ρXY=0 的充分必要条件是 E ( X Y ) = E ( X ) E ( Y ) . E(XY)=E(X)E(Y). E(XY)=E(X)E(Y).

有了协方差的概念和性质,我们可以对前述方差的性质进行证明,即证明若 X , Y X,Y X,Y 相互独立,有 D ( a X + b Y ) = a 2 D ( X ) + b 2 D ( Y ) D(aX+bY)=a^2D(X)+b^2D(Y) D(aX+bY)=a2D(X)+b2D(Y)
证明: C o v ( a X + b Y , a X + b Y ) = a C o v ( a X + b Y , X ) + b C o v ( a X + b Y , Y ) = a [ a C o v ( X , X ) + b C o v ( Y , X ) ] + b [ a C o v ( X , Y ) + b C o v ( Y , Y ) ] = a 2 D ( X ) + 2 a b C o v ( X , Y ) + b 2 D ( Y ) = a 2 D ( X ) + b 2 D ( Y ) Cov(aX+bY,aX+bY)=aCov(aX+bY,X)+bCov(aX+bY,Y)=a[aCov(X,X)+bCov(Y,X)]+b[aCov(X,Y)+bCov(Y,Y)]=a^2D(X)+2abCov(X,Y)+b^2D(Y)=a^2D(X)+b^2D(Y) Cov(aX+bY,aX+bY)=aCov(aX+bY,X)+bCov(aX+bY,Y)=a[aCov(X,X)+bCov(Y,X)]+b[aCov(X,Y)+bCov(Y,Y)]=a2D(X)+2abCov(X,Y)+b2D(Y)=a2D(X)+b2D(Y)

你可能感兴趣的:(#,数学一,概率论,考研数学,数学期望,方差,协方差,相关系数)