#include
#include
#include
#include
#include
#define bool int
#define true 1
#define false 0
struct Iris { //存储数据
double sepalLength; //花萼长度
double sepalWidth; //花萼宽度
double petaLength; //花瓣长度
double petaWidth; //花瓣宽度
char name[20]; //种类名字
int ID; //分类编号
};
struct Distance { //存储测试集待分类样本与训练集样本的欧式距离
double diatance; //欧式距离
int number; //训练集样本编号
};
int d[3]; //存储K中三类中各类数目
struct Distance dis[150];
struct Iris iris[150];
const char* irisname[3] = { "Iris-setosa","Iris-versicolor","Iris-virginica" };//用于比较名字
int K; //邻近样本个数
int DataNum; //样本总数
int Datatest; //测试样本个数
int Datatrain; //训练样本个数
int n; //训练集数目会变化
bool Inputs() {
srand(time(NULL));
char fname[256];
printf("请输入存放数据的文件:\n");
scanf("%s", fname);
printf("请输入样本数目:\n");
scanf("%d", &DataNum);
printf("请输入K的大小:\n");
scanf("%d", &K);
FILE* fp = fopen(fname, "rb");
if (fp == NULL) {
printf("不能打开文件!\n");
return false;
}
Datatrain = 3 * DataNum / 4; //选取3/4为训练集
Datatest = DataNum - Datatrain; //选取1/4为测试集
for (int i = 0; i < DataNum; ++i) { //读取数据
fscanf(fp, "%lf,%lf,%lf,%lf,%s", &iris[i].sepalLength, &iris[i].sepalWidth, &iris[i].petaLength, &iris[i].petaWidth,iris[i].name);
for (int j = 0; j < 3; ++j) {
if (strcmp(iris[i].name,irisname[j])==0) {//种类维度数据化
iris[i].ID = j+1;
break;
}
}
}
/*struct Iris temp;
for (int i = 0; i < DataNum; ++i) { //打乱数据,需要就用
int l = rand() % DataNum;
temp = iris[i];
iris[i] = iris[l];
iris[l] = temp;
}*/
/*for (int i = 0; i < DataNum; ++i) { //测试读取是否成功,需要就用
printf("%lf %lf %lf %lf %d\n", iris[i].sepalLength, iris[i].sepalWidth, iris[i].petaLength, iris[i].petaWidth, iris[i].ID);
}*/
fclose(fp);
return true;
}
bool compare(struct Distance a, struct Distance b) { //比较函数
return a.diatance < b.diatance;
}
int QuickPass(struct Distance* a, int low, int high) {//快速排序划分函数
double x = a[low].diatance;
while (low < high) {
while (low < high && x <= a[high].diatance) {
--high;
}
if (low == high) {
break;
}
a[low++] = a[high];
while (low < high && x >= a[low].diatance) {
++low;
}
if (low == high) {
break;
}
a[high--] = a[low];
}
a[low].diatance = x;
return low;
}
void QuickSort(struct Distance* a, int low, int high) {//快速排序函数
if (low >= high) {
return;
}
int p = QuickPass(a, low, high);
QuickSort(a, low, p - 1);
QuickSort(a, p + 1, high);
}
void classification() { //将测试集分类
int i, j;
n = Datatrain;
for (i = n; i < DataNum; ++i) {
for (j = 0; j < n; ++j) {
dis[j].diatance = sqrt(pow(iris[j].petaLength - iris[i].petaLength, 2) + pow(iris[j].petaWidth - iris[i].petaWidth, 2) + pow(iris[j].sepalLength - iris[i].sepalLength, 2) + pow(iris[j].sepalWidth - iris[i].sepalWidth, 2));
dis[j].number = j;
}
QuickSort(dis,0,n-1);
memset(d, 0, sizeof(d));
for (j = 0; j < K; ++j) {
d[iris[dis[j].number].ID-1]++;
}
int max = d[0];
int t = 0;
for (j = 1; j < 3; ++j) {
if (d[j] > max) {
max = d[j];
t = j;
}
}
iris[i].ID = t + 1;
n++; //将测试集分类样本归入训练集
}
}
void test() { //计算准确度
int i,j,l;
int t = 0;
double result;
for (i = Datatrain; i < DataNum; ++i) {
for (j = 0; j < 3; ++j) {
if (strcmp(iris[i].name,irisname[j])==0) {
l = j + 1;
break;
}
}
if (l == iris[i].ID) {
t++;
}
iris[i].ID = l;
}
result = (double)t / Datatest;
printf("\n预测准确度为:%lf\n", result);
}
int main() { //主函数
if (Inputs() == false) {
return 0;
}
classification();
test();
return 0;
}
在不打乱数据情况下,准确度普遍较低。且随着K值越来越大,准确度越来越低(如下图)。在打乱数据情况下,准确度更高(读者可自行测试)。
文件名:data,样本数量:150.
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica