- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- SRT3D: A Sparse Region-Based 3D Object Tracking Approach for the Real World
Terry Cao 漕河泾
3d人工智能计算机视觉目标跟踪
基于区域的方法在基于模型的单目3D跟踪无纹理物体的复杂场景中变得越来越流行。然而,尽管它们能够实现最先进的结果,大多数方法的计算开销很大,需要大量资源来实时运行。在下文中,我们基于之前的工作,开发了SRT3D,这是一种稀疏的基于区域的3D物体跟踪方法,旨在弥合效率上的差距。我们的方法在所谓的对应线(这些线模型化了物体轮廓位置的概率)上稀疏地考虑图像信息。由此,我们改进了当前的技术,并引入了考虑定义
- 如何一步步解决 DP 问题
顽强的猫尾草
转载自:https://leetcode.com/problems/house-robber/discuss/156523/From-good-to-great.-How-to-approach-most-of-DP-problems./177934例题在这:Leetcode198.HouseRobber这类特定的问题可以用下面的顺序来处理:总结递归关系递归(自顶向下)递归+数组(自顶向下)迭代+
- Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
MatthewHsw
SimplePose
arxiv:https://arxiv.org/pdf/1911.10529.pdfgithub:https://github.com/jialee93/Improved-Body-Parts原作者在知乎有讲解,链接既然是Rethinking,那么就要先只出需要rethinking的内容.文章主要针对于人体姿态估计中的bottom-up的方法,提出了关于bottom-up方法里的一些问题的思考:人
- QA 面试问题汇总
cbigame011
3.HaveyouwrittenTestPlan?WhatisaTestPlan?Whatdoesitinclude?Yes.WhatisaTestPlan?ATestPlanisadocumentdescribingthescope,approach,resources,andscheduleofintendedtestingactivities.Itidentifiestestitems,th
- 阅读笔记(IET-IP2021)Image stitching method by multi‐feature constrained alignment and colour adjustment
J@u1
传统版图像拼接笔记
YuanX,ZhengY,ZhaoW,etal.Imagestitchingmethodbymulti‐featureconstrainedalignmentandcolouradjustment[J].IETImageProcessing,2021,15(7):1499-1507.
- 翻译:An Incremental Approach to Compiler Construction 逐步构建编译器的方法
御风@户外
c学习
原文http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf目标语言scheme文档:https://www.scheme.com/tspl4/scheme语法简单说明,前置式实际是LISP的两大分支之一(CommonLisp、scheme),可参考LISP语法。对照翻译AnIncrementalApproachtoCompilerConstruction逐
- MFQE 2.0: A New Approach for Multi-FrameQuality Enhancement on Compressed Video
mytzs123
视频编码相关参考论文MFQE2.0
在过去几年中,深度学习在提高压缩图像/视频质量方面取得了巨大成功。现有的方法主要着眼于提高单个帧的质量,而没有考虑连续帧之间的相似性。由于本文所研究的压缩视频帧之间存在较大的波动,因此,对于相邻的高质量帧,可以利用帧相似性来提高低质量帧的质量。此任务是多帧质量增强(MFQE)。因此,本文提出了一种用于压缩视频的MFQE方法,作为这方面的首次尝试。在我们的方法中,我们首先开发了一种基于双向长短时记忆
- PointBeV:A Sparse Approach to BeV Predictions
m_buddy
BEVPerception计算机视觉
参考代码:PointBeV动机与出发点常见显式构建BEV特征的算法会稠密设置BEV网格,这样就会引入背景像素上的无效计算,对应内存与计算资源使用也会变大。这篇文章通过前景点筛选、由粗到精细化、窗口时序融合方式构建一种稀疏化表达的BEV特征表达。文章给出的方法自然在对应数据集下效果很好,但是在实际工程化中却需要解决如下的问题:1)前景和背景点区分在真实场景下是很难的,单纯依据阈值设置很难权衡准召2)
- 是时候反思药物治疗精神疾病的弊端了
节省将
是时候反思药物治疗精神疾病的弊端了2021-08-2009:13:16来源:利维坦https://www.163.com/dy/article/GHR69F9I05149MVQ.html原文/www.scientificamerican.com/article/has-the-drug-based-approach-to-mental-illness-failed/利维坦按:看这篇文章的时候,我脑
- 《A subjective and objective integrated approach to determine attribute weights》
Colleen_oh
大神作者题目:一种确定属性权重的主客观综合方法摘要:针对多属性决策问题,提出了一种确定属性权重的综合方法。该方法利用了决策者(DM)和目标信息形成一个双目标规划模型。因此,生成的属性权重和备选方案的排名既考虑了决策者的主观考虑,又考虑了客观信息。1、介绍多属性决策(MADM)是指在与多个属性关联的替代方案中进行选择的问题。代表一组离散的m个可能的备选方案。是一组n属性。这些属性是客观的,并且是额外
- 机器学习_12_梯度下降法、拉格朗日、KKT
少云清
机器学习机器学习人工智能拉格朗日梯度下降KKT
文章目录1梯度下降法1.1导数、梯度1.2梯度下降法1.3梯度下降法的优化思想1.4梯度下降法的调优策略1.5BGD、SGD、MBGD1.5.1BGD、SGD、MBGD的区别2有约束的最优化问题3拉格朗日乘子法3.1拉格朗日乘子法理解3.2对偶问题4KKT条件4.1KKT条件理解4.2KKT公式理解4.3KKT条件总结5高中距离知识回顾1梯度下降法1.1导数、梯度导数:一个函数在某一点的导数描述了
- 【ACL 2023】A Novel Table-to-Graph Generation Approach for Document-Level Joint Entity and RE
Trouble..
信息抽取自然语言处理信息抽取关系抽取
【ACL2023】ANovelTable-to-GraphGenerationApproachforDocument-LevelJointEntityandRelationExtraction论文:https://aclanthology.org/2023.acl-long.607/代码:https://github.com/ridiculouz/TaG/https://github.com/to
- An End-to-End Learning-Based Metadata Management Approach for Distributed File Systems——论文阅读
妙BOOK言
论文阅读论文阅读分布式
TC2022Paper,元数据论文阅读汇总“multiplemetadataserver(MDS)”多个元数据服务器“localitypreservinghashing(LPH)”局部保持哈希“MultipleSubsetSumProblem(MSSP).”多子集和问题“polynomial-timeapproximationscheme(PTAS)”多项式时间近似方法背景分布式元数据的挑战目前的
- 论文阅读:A visualized human-computer interactive approach to job shop scheduling
还是要努力呀!
论文阅读论文阅读多目标优化交互式
Avisualizedhuman-computerinteractiveapproachtojobshopscheduling作者:DongH.Baek、SangY.OH、WanC.Yoon期刊:COMPUTERINTEGRATEDMANUFACTURING、1999网络资源:Avisualizedhuman-computerinteractiveapproachtojobshopscheduli
- matplotlib之Figure类和Axes详解
stefanjoe
Pythonmatplotlib数据可视化python
Figure类classmatplotlib.figure.Figure(figsize=None,dpi=None,facecolor=None,edgecolor=None,linewidth=0.0,frameon=None,subplotpars=None,tight_layout=None,constrained_layout=None)看过前面文章就众所周知了,plt.figure会返
- 秋招机器学习面试题问题总结
上岸的程序员
机器学习算法面试题机器学习面试题机器学习面试总结秋招
1、LR为什么用Sigmod函数,这个函数的优缺点各是什么,为什么不用其他的函数?LR的损失函数是什么?2、决策树如果防止过拟合的,损失函数是什么?3、KKT条件有哪些,什么条件下用KKT条件。4、L1正则化为什么能够得到稀疏解,L2为什么能够得到趋于0的解,它们的图像是怎样的?5、GBDT的损失函数是什么?6、SVM的损失函数是什么?如何推导SVM?为什么引入核函数,以及为什么叫核函数?7、什么
- 1.22SVM(对偶性,KKT条件,核函数(高斯核函数RBF,参数伽马),软间隔问题(对误差容忍,参数C),总结,例题),SVM流程,代码,划分指定类数
CQU_JIAKE
机器学习&神经网络数模数学方法支持向量机机器学习算法
就是说数据有多维的特性,然后依据特性在坐标系种存在点,就是画一个面来分割不同的点,从而实现数据的分类将两类数据区分开W为X对应的权重分割线(超平面)所在,就是决策边界可以转化为求解两类数据的最大间隔问题支持向量是点,点的坐标是数据的特征正负超平面如果某个支持向量发生变化,为就是说,这个超平面是依据数据集计算得到的,然后这个数据是哪个类的,特征为哪些都是事先确定的,计算的目的是找一个超平面,使支持向
- KernelGPT: LLM for Kernel Fuzzing
I still …
程序分析Fuzzing系统安全程序分析漏洞检测大模型系统安全
KernelGPT:EnhancedKernelFuzzingviaLargeLanguageModels1.Introduction2.Background2.1.KernelandDeviceDrivers2.2.KernelFuzzing2.2.1.Syzkaller规约2.2.2.规约生成3.Approach3.1.DriverDetection3.2.SpecificationGener
- 深度学习|拉格朗日对偶及KKT条件推导
科研工作站
深度学习KKT对偶仿射
目录1主要内容2问题提出3对偶推导4KKT条件1主要内容在电力系统优化过程中,风光等分布式能源出力和负荷的不确定性(即源荷不确定性)形成了电力系统方向的研究热点,每个研究人员都试图通过自己的方法将研究推进的更深入一些,在理论研究的深层次上,离不开鲁棒优化,包括两阶段鲁棒优化、分布鲁棒优化算法等,鲁棒优化的基础知识是拉格朗日对偶和KKT条件,给大家推荐个课程——凌青老师的《凸优化》,该课程系统性讲解
- 论文笔记|Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
缸里有绿粥
ConvolutionalLSTMNetwork:AMachineLearningApproachforPrecipitationNowcasting论文地址一、摘要这篇文章是来自香港科技大学的团队,这个团队有和香港观测站合作,他们有一个前身的工作还有数据都是靠这个机构来收集的。这篇论文利用convolutionLSTM对降雨预报进行预测。他们的这个工作是用来做对天气的预测,他们收集了很多很多的雷
- SQP算法论文阅读1:NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems
小林up
科研算法SQP论文
SchittkowskiK.NLPQL:AFORTRANsubroutinesolvingconstrainednonlinearprogrammingproblems[J].Annalsofoperationsresearch,1986,5:485-500.SQP序列二次规划的思想是将约束非线性优化问题等效为求解一系列二次规划子问题求解,对于约束问题,一般的描述是:这个问题必须是光滑的:定义拉格
- 消除噪音:Chain-of-Note (CoN) 强大的方法为您的 RAG 管道提供强大动力
lichunericli
LLM人工智能语言模型
论文地址:https://arxiv.org/abs/2311.09210英文原文地址:https://praveengovindaraj.com/cutting-through-the-noise-chain-of-notes-con-robust-approach-to-super-power-your-rag-pipelines-0df5f1ce7952在快速发展的人工智能和机器学习领域,出
- Lecture05:随机市场出清
运筹码仓
电力系统中的高级优化和博弈论线性规划
目录1电力市场的不确定性2.随机市场出清问题2.1数学模型2.2GAMS计算源码2.3计算结果3随机市场出清模型的均衡形式4基于场景的随机规划本系列已发表文章列表:Lecture01:市场出清问题的优化建模Lecture1b:如何由原始线性规划模型得到最优条件和对偶问题Lecture02:均衡问题-优化问题以及KKT等价Lecture03:市场出清机制的理想特性先提供两本参考教材:Conejo,A
- 运筹说 第100期 | 库恩塔克条件(KKT条件)的另一个“K”
运筹说
机器学习算法人工智能
上期的最后,我们留下了一个问题——库恩塔克条件为什么叫KKT条件,这多出来的一个“K”指的是谁呢?本期我们就将为大家介绍KKT条件背后的故事以及那另一个“K”。一、KKT条件的历史背景KKT条件(Karush-Kuhn-Tuckerconditions)是由三位数学家的姓氏组成的缩写,分别是Karush、Kuhn和Tucker。这三位数学家都对非线性规划问题的最优化条件做出了重要的贡献。不同于Ku
- 关于DP算法求解的思路
今天不想掉头发
https://leetcode.com/problems/house-robber/discuss/156523/From-good-to-great.-How-to-approach-most-of-DP-problems.即一共5步1.找到递归的的关系2.写出递归解(自顶向下)3.带记忆数组的递归解,减少重复计算的次数(自顶向下)4.迭代+记忆数组(自底向上)5.迭代+变量(自底向上)
- 论文笔记(十九)RGB-D Object Tracking: A Particle Filter Approach on GPU
墨绿色的摆渡人
文章粒子滤波
RGB-DObjectTracking:AParticleFilterApproachonGPU文章概括摘要1.介绍2.贡献3.粒子滤波器4.可能性评估5.实施细节6.实验A.物体模型B.合成序列C.真实序列7.结论8.鸣谢文章概括作者:ChanghyunChoiandHenrikI.Christensen来源:CenterforRobotics&IntelligentMachines,Colle
- 【提示学习论文七】Visual Prompt Tuning论文原理
一个很菜的小猪
提示学习学习prompt
文章目录VisualPromptTuning(VPT)文章介绍Abstract1Introduction2RelatedWork3Approach3.1准备工作3.2Visual-PromptTuning(VPT)3.2.1VPT-Shallow3.2.2VPT-Deep3.2.3StoringVisualPrompts存储视觉提示4实验主要结果模型设计变体的消融5分析和讨论6结论VisualPr
- Influxdb2修改管理员密码
hong3731
时序数据库
通过恢复管理员令牌来重置InfluxDB2管理员的密码1.找到数据库的配置文件一般为config.json2.配置文件的的blod文件配置3.在这个混合文本和二进制json文件中搜索已知的用户名或token之类的字符串。例如:"id":"0bd73badf2941000","token":"h8c4nbzfYHPDLNMryWY8TA8XbsO3rBOMW1BtkbhWKajslr1Mu47kKt
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理