- 遥感中的反演
ximenchuixuezijin
工作农业算法金山网络io
反演在遥感中是什么意思?按楼主的需求回答:一句话--遥感的本质是反演。具体解释:遥感的本质是反演,而从反演的数学来源讲,反演研究所针对的首先是数学模型。因此,遥感反演的基础是描述遥感信号或遥感数据与地表应用之间的关系模型,也就是说,遥感模型是遥感反演研究的对象。要进行遥感反演研究,首先要解决的问题是对地表遥感像元信息的地学描述。遥感像元尺度上的地学描述是十分有意义的课题,由于地球表面是一个复杂的系
- 1.Introduction to Spring Web MVC framework
Freeking1024
SpringMVC前端mvcspring
WebMVCframework文档:22.WebMVCframework(spring.io)概述WebMVC框架(WebModel-View-ControllerFramework)是一种用于构建Web应用程序的软件架构模式。MVC模式将应用程序分为三个主要组件:模型(Model)、视图(View)和控制器(Controller)。这种分离有助于组织代码和简化开发和维护过程。以下是MVC框架的三
- ARM Cortex-A(armV8)编程手册V1.0:指令集与源码应用指南
AWS云计算
本文还有配套的精品资源,点击获取简介:ARMCortex-A(armV8)编程手册V1.0详细介绍了ARM架构的V8版本,提供了对armV8指令集的深入理解,强调了C和C++源码在实际开发中的应用。手册涵盖了armV8指令集增强,包括向量处理、浮点运算和内存访问优化等,以及新的安全特性如硬件虚拟化。通过C/C++示例,指导开发者如何编写高效代码,利用armV8架构的优势,并解释了内存一致性模型和并
- matlab神经网络遥感反演,基于BP神经网络的盐渍土盐分遥感反演模型研究
老许的花开
matlab神经网络遥感反演
采用遥感技术和BP神经网络技术,结合野外实测的盐渍土光谱特征和实验室化验的土壤含盐数据,对盐渍土盐分的遥感反演进行了模型的设计与编程实现。BP神经网络模型的预测精度在62.5%,明显高于传统统计模型的预测精度,表明BP神经网络能较好地模拟土壤含盐量与光谱数据之间的关系,可用于建立土壤盐分遥感反演模型。更多还原【Abstract】Theresearchonsalinityinversionfromr
- Aligner:自动修正AI的生成结果,北大推出残差修正模型对齐技术
蚝油菜花
每日AI项目与应用实例人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发非常感兴趣,我会每日分享大模型与AI领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读技术背景:Aligner是北京大学团队提出的大语言模型对齐技术,通过学习对齐答案与未对齐答案之间的修正残差来提升模型性能。核心优势:作为即插即用的模块,可以直接应用于各种开源和基于API的模型
- cruise软件模型,混动仿真模型,IMMD架构混联混动仿真模型,Cruise混动仿真模型,混联混动汽车动力性经济性仿真
「已注销」
汽车matlab开发语言
cruise软件模型,混动仿真模型,IMMD架构混联混动仿真模型,Cruise混动仿真模型,混联混动汽车动力性经济性仿真。关于模型1.本模型是基于IMMD架构搭载的混联混动仿真模型,关于IMMD架构详细信息请自行查询。模型是基于cruise/simulink搭建的base模型,策略模型基于MATLAB/Simulink平台搭建完成,通过C++编译器编译成dll文件给CRUISE引用,实现联合仿真。
- 2025 AI行业变革:从DeepSeek V3到o3-mini的技术演进
Light60
AI应用产业篇人工智能DeepSeek-V3o3-mini
【核心要点】DeepSeekV3引领算力革命,成本降至1/20o3-mini以精准优化回应市场挑战AI技术迈向真正意义的民主化行业生态正在深刻重构一、市场格局演变发展脉络2025年初,AI行业迎来重要转折。DeepSeek率先发布V3模型,通过革命性的架构创新和算力优化,将AI应用成本降至历史新低。这一突破引发广泛关注,推动AI技术加速走向普及。随后,OpenAI推出o3-mini作为战略性回应,
- cruise软件模型,混动仿真模型,IMMD架构混联混动仿真模型,Cruise混动仿真模型
fguynpx
程序人生
cruise软件模型,混动仿真模型,IMMD架构混联混动仿真模型,Cruise混动仿真模型,混联混动汽车动力性经济性仿真。关于模型1.本模型是基于IMMD架构搭载的混联混动仿真模型,关于IMMD架构详细信息请自行查询。模型是基于cruisesimulink搭建的base模型,策略模型基于MATLABSimulink平台搭建完成,通过C++编译器编译成dll文件给CRUISE引用,实现联合仿真。2.
- ArcGIS土地利用数据制备、分析及基于FLUS模型土地利用预测(数据采集、处理、分析、制图)
赵钰老师
ArcGIS生态系统遥感arcgis数据分析
FLUS(FlexibleLandUseSimulation)模型是一个用于模拟土地利用变化的模型,它结合了经济理论、土地利用和土地覆盖变化的动态过程。FLUS模型由美国农业部农业经济研究服务局(ERS)开发,旨在提供对美国及全球土地利用变化的预测。以下是FLUS模型的一些关键特点:土地利用变化:模拟不同土地利用类型之间的转换,如从农田到城市用地或森林。经济驱动:模型基于经济原则,模拟土地所有者如
- 大语言模型丨ChatGPT-4o深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)
赵钰老师
ChatGPTpython人工智能语言模型深度学习数据分析chatgpt机器学习随机森林
目录第一章、2024大语言模型最新进展与ChatGPT各模型第二章、ChatGPT-4o提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)第三章、ChatGPT4-4o助力日常生活、学习与工作第四章、基于ChatGPT-4o课题申报、论文选题及实验方案设计第五章、基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写第六章、ChatGPT-4o编程入
- 基于IMMD架构的Cruise混动仿真模型及策略详解
ExhNGUa
程序人生
cruise软件模型,混动仿真模型,IMMD架构混联混动仿真模型,Cruise混动仿真模型,混联混动汽车动力性经济性仿真。关于模型1.本模型是基于IMMD架构搭载的混联混动仿真模型,关于IMMD架构详细信息请自行查询。模型是基于cruisesimulink搭建的base模型,策略模型基于MATLABSimulink平台搭建完成,通过C++编译器编译成dll文件给CRUISE引用,实现联合仿真。2.
- [系统安全] 六十一.恶意软件分析 (12)LLM赋能Lark工具提取XLM代码的抽象语法树(初探)
Eastmount
系统安全与恶意代码分析系统安全抽象语法树Lark大模型XLM
您可能之前看到过我写的类似文章,为什么还要重复撰写呢?只是想更好地帮助初学者了解病毒逆向分析和系统安全,更加成体系且不破坏之前的系列。因此,我重新开设了这个专栏,准备系统整理和深入学习系统安全、逆向分析和恶意代码检测,“系统安全”系列文章会更加聚焦,更加系统,更加深入,也是作者的慢慢成长史。换专业确实挺难的,逆向分析也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向
- Django 模型
wjs2024
开发语言
Django模型Django模型是Django框架的核心组件之一,它用于定义应用程序的数据结构。在Django中,模型是Python类,通常继承自django.db.models.Model。每个模型类代表数据库中的一个表,模型类的属性对应表中的字段。1.创建模型创建Django模型非常简单。首先,你需要定义一个继承自django.db.models.Model的类,然后在类中定义模型字段。例如,
- 本地部署DeepSeek-R1 1.5B
狂笑韦恩
大模型deepseek
第一步,下载ollama:ollama然后安装ollama然后打开windowspowershell然后输入ollamarundeepseek-r1:1.5b等待ollama下载完模型,就是可以使用了ollamarundeepseek-r1:1.5bpullingmanifestpullingaabd4debf0c8…89%▕████████████████████████████████████
- MVC 模式与javaEE三层架构
剥包谷
javajavaWeb-mvc三层架构
MVC设计模式mvc这种设计模式,不光运用于Web领域,而且也能用于非Web领域;可以特指一种表现层设计模式,不限于Java语言;JavaWeb应用中应用的最广泛的设计模式便是MVC模式,目前的主流Web框架大多也是基于MVC设计模式所编写的。MVC模式主要分为以下三个基础模块:Model模型:主要负责、javaBean封装数据、业务逻辑以及数据库的交互View视图:主要用于显示数据和提交数据Co
- DeepSeek R1 Ollama本地化部署全攻略:三步实现企业级私有化大模型部署
Coderabo
DeepSeekR1Ollama
前言Ollama作为当前最受欢迎的本地大模型运行框架,为DeepSeekR1的私有化部署提供了便捷高效的解决方案。本文将深入讲解如何将HuggingFace格式的DeepSeekR1模型转换为Ollama支持的GGUF格式,并实现企业级的高可用部署方案。文章包含完整的量化配置、API服务集成和性能优化技巧。—一、基础环境搭建1.1系统环境要求操作系统:Ubuntu22.04LTS或CentOS8+
- Spark 任务与 Spark Streaming 任务的差异详解
goTsHgo
spark-streaming分布式大数据sparkstreaming大数据分布式
Spark任务与SparkStreaming任务的主要差异源自于两者的应用场景不同:Spark主要处理静态的大数据集,而SparkStreaming处理的是实时流数据。这些差异体现在任务的调度、执行、容错、数据处理模式等方面。接下来,我们将从底层原理和源代码的角度详细解析Spark任务和SparkStreaming任务的差别。1.任务调度模型差异1.1Spark任务的调度模型Spark的任务调度基
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- DeepSeek点燃国产大模型斗志,RAG等核心技术被重估
量子位
原创关注前沿科技量子位黑马DeepSeek-R1的崛起,给外国网友上演了一场来自东方的震撼。一边,OpenAI和Claude都破了大防,一个声讨“窃取”,一个嘲讽“落后”,两家水火不容的对手竟然以这种戏剧性的方式,鲜有地达成了一致。另一边,微软、亚马逊等云服务厂商,甚至英伟达都开启了“真香”模式,你追我赶地在自家云平台上线DeepSeek-R1。但不管破防还是真香,DeepSeek-R1都已经成为
- spark和python的区别_Spark入门(Python)
weixin_39934257
spark和python的区别
Spark是第一个脱胎于该转变的快速、通用分布式计算范式,并且很快流行起来。Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为Hadoop之上的特殊系统。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理
- Unet 改进:在encoder和decoder间加入TransformerBlock
听风吹等浪起
AI改进系列transformer图像分割Unet
目录1.TransformerBlock2.Unet改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.TransformerBlockTransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前
- 开源LLMs导览:工作原理、顶级LLM列表对比
万俟淋曦
SomeInsights人工智能AI生成式人工智能大模型LLMchatgpt大语言模型
机器人、人工智能相关领域news/events(专栏目录)本文目录一、开源LLM是什么意思?二、开源LLM如何工作?2.1预训练2.2代币化2.3开源LLM的微调2.4输入编码2.5训练与优化2.6推理三、开源LLM对组织的好处3.1增强的数据安全和隐私3.2节约成本3.3减少供应商依赖性3.4代码透明度四、哪种LLM模式最好?4.1BERT4.2LLaMA(LargeLanguageModelM
- 揭秘大语言模型:什么是LLM大模型?
AGI-杠哥
程序人生兼职副业web安全语言模型人工智能自然语言处理
前言自从去年chatgpt横空出世以来,它火爆也让大语言模型这个词变的很流行,到底什么是大语言模型,今天从初学者的角度介绍一下大语言模型的基本概念、组成部分和基本工作流程等。下面的介绍中如果涉及到一些专业术语不太理解,也没关系,只要有一个感性认识即可,毕竟我们不打算造车,只要做到自己部署开源大模型的时候,不至于脸盲就可以了。一、大语言模型特点和基本组成大语言模型(LargeLanguageMode
- 【3D目标检测】YOLO3D 基于图像的3D目标检测算法
BILLY BILLY
YOLOv8系列3d目标检测YOLO
参考文档:https://ruhyadi.github.io/project/computer-vision/yolo3d/代码:https://github.com/ruhyadi/yolo3d-lightning本次分享将会从以下四个方面展开:物体检测模型中的算法选择单目摄像头下的物体检测神经网络训练预测参数的设计模型训练与距离测算1.物体检测模型中的算法选择物体检测(ObjectDetect
- MySQLDBA修炼之道-开发篇(一)
滔_GY
MySQLDBA修炼之道-读书笔记数据库oraclemysql
三、开发基础1.数据模型1.1关系数据模型介绍关于NULL如果某个字段的值是未知的或未定义的,数据库会提供一个特殊的值NULL来表示。NULL值很特殊,在关系数据库中应该小心处理。例如查询语句“select*fromemployeewhere绩效得分绩效得分>85;”就不能查询出绩效得分是未知的(NULL)的数据。关于key和索引key常指表中能唯一标识一笔记录的字段(属性)或多个字段的组合。现实
- Encoder-only decoder-only encoder-decoder大模型的区别
阿牛牛阿
aiopencv人工智能AIGCchatgpt
1.Encoder-Only架构-定义:仅包含编码器部分,主要用于处理输入数据而不生成输出。-适用任务:文本分类、情感分析、命名实体识别等。-优点:能够更好地理解输入文本的语义和上下文信息,适合需要特征提取的任务。-缺点:无法直接生成文本输出。-代表模型:BERT、RoBERTa、ALBERT等。2.Decoder-Only架构-定义:仅包含解码器部分,通常用于序列生成任务。-适用任务:文本生成、
- 【软件工程】-- 期末考试题含答案(二)(考前必看、看完不挂科)
四月天行健
大学课程期末试题软件工程p2plinq
试题一选择题1、具有风险分析的软件生命周期模型是( C )。A.瀑布模型 B.喷泉模型 C.螺旋模型 D.增量模型2、软件工程的基本要素包括方法、工具和(A)。A. 过程
- 【AI知识点】三种不同架构的大语言模型(LLMs)的区别
AI完全体
AI知识点人工智能语言模型自然语言处理机器学习深度学习注意力机制自注意力机制
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】在自然语言处理(NLP)中,预训练语言模型(LLMs,LargeLanguageModels)通常基于不同的架构,如仅编码器的模型(Encoder-only)、编码器-解码器的模型(Encoder-Decoder),以及仅解码器的模型(Decoder-only)。这三种架构有着显著的区别,主要体现在功能、适用任务和性能上。下面从架构、功能
- Python软体中使用Scikit-learn库训练简单线性回归模型
清水白石008
Python题库pythonpythonscikit-learn线性回归
Python软体中使用Scikit-learn库训练简单线性回归模型1.引言作为数据科学家和机器学习从业者,我们经常需要处理各种类型的数据,并从中提取有价值的信息。其中,线性回归是最基础也是最常用的机器学习算法之一。它可以帮助我们预测连续型目标变量,在很多实际应用场景中都有广泛应用,比如房价预测、销量预测等。在本文中,我将使用Python的Scikit-learn库,介绍如何训练一个简单的线性回归
- Unity FBX导出系统源码:WRP FBX Exporter完整解析
Kay Lam
本文还有配套的精品资源,点击获取简介:UnityFBX模型导出系统是游戏开发中重要工具,它支持3D模型数据在不同平台和软件间以FBX格式进行交换。WRPFBXExporter源码提供自定义模型导出功能,允许开发者根据项目需求优化模型拓扑、UV坐标和骨骼绑定等。此源码涵盖了模型数据的读取、转换、优化和写入过程,便于开发者创建高效、精确的导出设置。源码附带使用说明文档,帮助用户快速集成和定制。此外,作
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文