【线性代数】通过矩阵乘法得到的线性方程组和原来的线性方程组同解吗?

一、通过矩阵乘法得到的线性方程组和原来【线性代数】通过矩阵乘法得到的线性方程组和原来的线性方程组同解吗?_第1张图片的线性方程组同解吗?

如果你进行的矩阵乘法涉及一个线性方程组 Ax = b,并且你乘以一个可逆矩阵 M,且产生新的方程组 M(Ax) = Mb,那么这两个系统是等价的;它们具有相同的解集。这是因为可逆矩阵的乘法可以视为一个可逆的线性变换,不会改变方程解的存在性或唯一性。

换句话说,如果你将原始系数矩阵 A 通过左乘以一个可逆矩阵 M 来转换成 MA,且同样将常数项向量 b 转化为 Mb,那么新的线性方程组 MAx = Mb 与原始的 Ax = b 同解,因为你可以通过乘以 M 的逆矩阵 M⁻¹ 来恢复原始的方程组。

也就是说,如果 M 是可逆的,那么两个方程组是等价的,解 x 是不变的。不过值得注意的是,解不会变,但是方程组的表现形式(系数矩阵)会变。

如果 M 不是可逆的,或者说是奇异的,那么矩阵乘法会改变方程组的解集。在实践中,我们通常寻找可逆的变换,以保持方程组的解不变。总的来说,在应用矩阵乘法和其他类型的变换时,理解矩阵操作如何影响线性方程组的解是非常重要的。

二、矩阵与表示线性方程组的增广矩阵相乘得到的增广矩阵表示的线性方程组,与最初的线性方程组同解吗【线性代数】通过矩阵乘法得到的线性方程组和原来的线性方程组同解吗?_第2张图片

矩阵与代表线性方程组的增广矩阵相乘得到的增广矩阵表示的线性方程组的解是否相同依赖于所用的矩阵是不是可逆的。

如果你使用一个可逆矩阵 P 与线性方程组 Ax = b 的增广矩阵 [A | b] 相乘,即计算 PAx = Pb,且 P 为方程组系数矩阵 A 同阶的可逆矩阵,那么新的增广矩阵所表示的线性方程组将与原始的线性方程组具有相同的解集。这是因为左乘一个可逆矩阵相当于在原有方程上应用了一个可逆的行变换。

可逆的行变换包括:

1. 交换两行(对应于乘以一个置换矩阵)。
2. 用非零常数乘以一行(对应于乘以一个对角矩阵,且对角线上只有一个元素不为1)。

3. 将一行的非零倍加到另一行上(对应于乘以一个特殊形式的上(下)三角矩阵)。

行变换不改变方程组的解。因此,通过这样的变换得到的新系数矩阵 PA 和新的常数项 Pb 组成的新的增广矩阵所代表的线性方程组与原方程组是等价的。

然而,如果所用的矩阵 P 不是可逆的,那么对增广矩阵的乘法可能会改变原方程的解集。此时,新的方程组可能与原始的方程组不再等价。

三、什么矩阵是不可逆的?即什么矩阵与表示线性方程组的增广矩阵相乘得到的增广矩阵表示的线性方程组,与最初的线性方程组不同解?【线性代数】通过矩阵乘法得到的线性方程组和原来的线性方程组同解吗?_第3张图片

不可逆矩阵,也称为奇异矩阵,是指那些没有逆矩阵的矩阵。一个方阵是不可逆的当且仅当其行列式为零或者它不是满秩的(即矩阵的行或列之间线性相关)。不可逆矩阵也不能作为其他矩阵的逆矩阵存在。

如果你用一个不可逆(奇异)矩阵与一个表示线性方程组的增广矩阵相乘,你得到的新的增广矩阵所表示的线性方程组可能会有不同的解集,或者可能根本没有解。这是因为不可逆矩阵的乘法可能会改变原方程系统的列空间或零空间,可能会导致信息的丢失,从而改变解的结构。

例如,考虑奇异矩阵 M 和一个线性方程组 Ax = b,其中 A 是系数矩阵,x 是变量向量,b 是常数向量。如果我们将 M 乘以 A 和 b 创建新的方程组 MAx = Mb,新的系数矩阵 MA 可能减少了行的数目(即行之间线性相关),这直接改变了解的性质。

一些特征表明矩阵是不可逆的:

1. 行列式为零。
2. 矩阵不是满秩的(行秩或列秩小于矩阵的阶数)。
3. 矩阵的行或列向量之间存在线性相关性。

4. 矩阵有零特征值,也就是说,存在非零向量 v 使得 Av = 0,其中 A 是不可逆矩阵。

在实际操作中,我们通常通过计算矩阵的行列式或者尝试找到它的逆矩阵来检验矩阵是否可逆。当处理线性方程组时,一个常用的方法是通过行操作(如行交换、行相加、数乘行)来将系数矩阵变为行最简形式,这可以帮助我们确定方程组的解集。如果通过这些操作得到了多余的约束(例如,出现了类似于 0x = 1 这样的不可能的方程),或者发现方程有无限多解(系数矩阵的秩小于变量的数量),那么这会指出原始矩阵是不可逆的。 

代码:

import numpy as np

# 定义矩阵A和B
matrix_A = np.array([[1, -1], [1, -1]])
matrix_B = np.array([[1, 2, 5], [3, 4, 11]])

# 计算矩阵乘积
result = np.dot(matrix_A, matrix_B)

# 打印结果
print(result)

# 计算行列式
determinant = np.linalg.det(matrix_A)

# 输出行列式的结果
print("行列式为:", determinant)

运行结果:

[[-2 -2 -6]
 [-2 -2 -6]]
行列式为: 0.0

你可能感兴趣的:(数学,线性代数,矩阵)