浅谈goroutine

以下内容均属个人理解,如果错误,还请斧正

What

goroutine是golang中的coroutine,也叫协程,微软大法称之纤程(Fiber)。

协程是一种更细粒度的调度,可以满足多个不同处理逻辑的协程共享一个线程资源。

Why

在谈goroutine之前,先解释下为什么要使用这种技术:

大家应该知道最初操作系统最细粒度的调度是内核级线程(Thread),线程其实就是一个栈加一堆资源。操作系统一会将CPU的时间片分给线程A,一会将CPU的时间片分给线程B,靠A和B的栈来保存A和B的执行状态。起初软件的并发处理并不多,线程池完全够用,但随着软件的复杂度增高,并发量越来越大,线程成了稀缺资源,所以go发明了goroutine,提高线程在异步处理中的利用率。

How

golang有一个强大的调度器维护goroutine在内核级线程上运行,确保所有的goroutine都使用且尽可能公平的使用CPU资源。支撑整个调度器的主要有4个重要结构,分别是M、G、P、Sched:

  • M代表内核级线程,一个M就是一个线程,goroutine就是跑在M之上的;M是一个很大的结构,里面维护小对象内存cache(mcache)、当前执行的goroutine、随机数发生器等等非常多的信息。
  • P全称是Processor,处理器,它的主要用途就是用来执行goroutine的,所以它也维护了一个goroutine队列,里面存储了所有需要它来执行的goroutine,这个P的角色可能有一点让人迷惑,一开始容易和M冲突,后面重点聊一下它们的关系。
  • G就是goroutine实现的核心结构了,G维护了goroutine需要的栈、程序计数器以及它所在的M等信息。
  • Sched结构就是调度器,它维护有存储M和G的队列以及调度器的一些状态信息等。

网络上有一个图来比较准确的描述了M、P和G的关系:


地鼠用小车运着一堆待加工的砖。M就可以看作图中的地鼠,P就是小车,G就是小车里装的砖(以下描述摘录)。

  1. runqget, 地鼠(M)试图从自己的小车(P)取出一块砖(G),当然结果可能失败,也就是这个地鼠的小车已经空了,没有砖了。
  2. findrunnable, 如果地鼠自己的小车中没有砖,那也不能闲着不干活是吧,所以地鼠就会试图跑去工场仓库取一块砖来处理;工场仓库也可能没砖啊,出现这种情况的时候,这个地鼠也没有偷懒停下干活,而是悄悄跑出去,随机盯上一个小伙伴(地鼠),然后从它的车里试图偷一半砖到自己车里。如果多次尝试偷砖都失败了,那说明实在没有砖可搬了,这个时候地鼠就会把小车还回停车场,然后睡觉休息了。如果地鼠睡觉了,下面的过程当然都停止了,地鼠睡觉也就是线程sleep了。
  3. wakep, 到这个过程的时候,可怜的地鼠发现自己小车里有好多砖啊,自己根本处理不过来;再回头一看停车场居然有闲置的小车,立马跑到宿舍一看,你妹,居然还有小伙伴在睡觉,直接给屁股一脚,“你妹,居然还在睡觉,老子都快累死了,赶紧起来干活,分担点工作。”,小伙伴醒了,拿上自己的小车,乖乖干活去了。有时候,可怜的地鼠跑到宿舍却发现没有在睡觉的小伙伴,于是会很失望,最后只好向工场老板说——”停车场还有闲置的车啊,我快干不动了,赶紧从别的工场借个地鼠来帮忙吧。”,最后工场老板就搞来一个新的地鼠干活了。
  4. execute,地鼠拿着砖放入火种欢快的烧练起来。

注: “地鼠偷砖”叫work stealing,一种调度算法。

到这里,貌似整个工场都正常的运转起来了,无懈可击的样子。不对,还有一个疑点没解决,假设地鼠的车里有很多砖,它把一块砖放入火炉中后,何时把它取出来,放入第二块砖呢?难道要一直把第一块砖烧练好,才取出来吗?那估计后面的砖真的是等得花儿都要谢了。这里就是要真正解决goroutine的调度,上下文切换问题。

调度点:

当我们翻看channel的实现代码可以发现,对channel读写操作的时候会触发调用runtime·park函数。goroutine调用park后,这个goroutine就会被设置位waiting状态,放弃cpu。被park的goroutine处于waiting状态,并且这个goroutine不在小车(P)中,如果不对其调用runtime·ready,它是永远不会再被执行的。除了channel操作外,定时器中,网络poll等都有可能park goroutine。

除了park可以放弃cpu外,调用runtime·gosched函数也可以让当前goroutine放弃cpu,但和park完全不同;gosched是将goroutine设置为runnable状态,然后放入到调度器全局等待队列(也就是上面提到的工场仓库,这下就明白为何工场仓库会有砖块(G)了吧)。

除此之外,就轮到系统调用了,有些系统调用也会触发重新调度。Go语言完全是自己封装的系统调用,所以在封装系统调用的时候,可以做不少手脚,也就是进入系统调用的时候执行entersyscall,退出后又执行exitsyscall函数。 也只有封装了entersyscall的系统调用才有可能触发重新调度,它将改变小车(P)的状态为syscall。还记一开始提到的sysmon线程吗?这个系统监控线程会扫描所有的小车(P),发现一个小车(P)处于了syscall的状态,就知道这个小车(P)遇到了goroutine在做系统调用,于是系统监控线程就会创建一个新的地鼠(M)去把这个处于syscall的小车给抢过来,开始干活,这样这个小车中的所有砖块(G)就可以绕过之前系统调用的等待了。被抢走小车的地鼠等系统调用返回后,发现自己的车没,不能继续干活了,于是只能把执行系统调用的goroutine放回到工场仓库,自己睡觉去了。

从goroutine的调度点可以看出,调度器还是挺粗暴的,调度粒度有点过大,公平性也没有想想的那么好。

现场处理:

goroutine在cpu上换入换出,不断上下文切换的时候,必须要保证的事情就是保存现场和恢复现场,保存现场就是在goroutine放弃cpu的时候,将相关寄存器的值给保存到内存中;恢复现场就是在goroutine重新获得cpu的时候,需要从内存把之前的寄存器信息全部放回到相应寄存器中去。

goroutine在主动放弃cpu的时候(park/gosched),都会涉及到调用runtime·mcall函数,此函数也是汇编实现,主要将goroutine的栈地址和程序计数器保存到G结构的sched字段中,mcall就完成了现场保存。恢复现场的函数是runtime·gogocall,这个函数主要在execute中调用,就是在执行goroutine前,需要重新装载相应的寄存器。

你可能感兴趣的:(浅谈goroutine)