- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 替代开方运算sqrt
qq_24158561
算法c语言stm32c#
8位mcu开方math.h容易超ROM空间;下面几种替代方案:二分法逐次逼近,牛顿法,#definesqrtsqrt_16//sqrt0//sqrt1//sqrt2floatfsqrt(doublenumber){//牛顿叠代doubleapprox=number/2.0;doubleprecision=0.001f;//1E-7;while(abs(approx*approx-number)>p
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- 多模态大模型:技术原理与实战 ChatGPT的诞生
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战ChatGPT的诞生作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习在NLP中的应用1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2预训练语言模型的发展1.3.3GPT系
- NDT算法
Joeybee
SLAM算法
上一次我们学习了高翔《自动驾驶与机器人中的SLAM技术》中的三维ICP算法,其中包括点对点、点对线、点对面的ICP算法,本次博客学习NDT算法的源码。NDT算法与ICP算法的最大不同之处,在我看来是NDT考虑了均值和方差这两个局部统计量。从最后的求解方法来看,NDT采用了加权最小二乘问题的高斯-牛顿法,和ICP算法的最明显区别是多了权重分布。从高翔书中的测试结果来看,NDT的收敛速度稍弱于点对面I
- 统计机器学习第十三章极大似然估计的性质——图解MLE的渐进正态性
cui_hao_nan
统计机器学习导论机器学习
n=10;t=10000;s=1/12/n;x=linspace(-0.4,0.4,100);y=1/sqrt(2*pi*s)*exp(-x.^2/(2*s));z=mean(rand(t,n)-0.5,2);figure(1);clf;holdonb=20;hist(z,b);h=plot(x,y*t/b*(max(z)-min(z)),'r-');这段代码的功能是生成随机数并进行直方图和曲线的
- 人工神经网络通过调整,神经网络怎么调参数
小浣熊的技术
神经网络matlab算法
神经网络算法中,参数的设置或者调整,有什么方法可以采用若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- Python和Java代码实现:切线法求解一维最优化问题
twinkle 222
运筹优化学习专栏pythonjava算法切线法
Python和Java代码实现:切线法求解一维最优化问题代码实现Python代码Java代码求解实例根据概念查询,切线法定义如下:切线法(TangentMethod)是一种用于求解非线性方程的数值方法。它也被称为牛顿法(Newton’sMethod),因为它是由艾萨克·牛顿发明的。牛顿切线法是一种求解方程近似解的数值方法。它利用函数在某一点的切线来逼近函数的零点,从而得到方程的近似解。该方法的原理
- 深度学习中的激活函数、损失函数、优化算法
Chealkeo
DL-def自然语言处理深度学习神经网络
深度学习中的激活函数、损失函数、优化算法DL小将激活函数sigmoidtanhrelugelusoftmax损失函数分类问题常用的损失函数回归问题常用的损失函数优化算法随机梯度下降SGDAdam牛顿法DL小将本文对深度学习中的激活函数、损失函数和常用到的优化算法进行总结分析、记录学习。优化算法用来更新模参数,经过一系列计算并通过激活函数得
- 使用牛顿法求解非线性方程
hututu1122
算法matlab迭代加深
牛顿法的介绍牛顿法,也称为牛顿-拉弗森方法,是一种强大的数值算法,用于快速找到函数的零点,即求解f(x)=0f(x)=0f(x)=0的xxx值。这个方法特别适用于求解复杂的非线性方程,其中解析解可能难以找到或者不存在。牛顿法的关键优势在于它的收敛速度非常快,尤其是当初始猜测接近实际解时。基本原理牛顿法的基本思想是利用函数在某点的线性近似来预测函数的根。如下图所示:给定一个近似解xnx_nxn,你可
- 机器学习优化过程中的各种梯度下降方法(SGD,AdaGrad,RMSprop,AdaDelta,Adam,Momentum,Nesterov)
bj_yoga
机器学习优化过程中的各种梯度下降方法(SGD,AdaGrad,RMSprop,AdaDelta,Adam,Momentum,Nesterov)实际上,优化算法可以分成一阶优化和二阶优化算法,其中一阶优化就是指的梯度算法及其变种,而二阶优化一般是用二阶导数(Hessian矩阵)来计算,如牛顿法,由于需要计算Hessian阵和其逆矩阵,计算量较大,因此没有流行开来。这里主要总结一阶优化的各种梯度下降方
- 非精线搜索步长规则Armijo规则&Goldstein规则&Wolfe规则
Nie_Xun
算法
非精确线搜索步长规则在数值优化中,线搜索是一种寻找合适步长的策略,以确保在目标函数上获得足够的下降。如最速下降法,拟牛顿法这些常用的优化算法等,其中的线搜索步骤通常使用Armijo规则、Goldstein规则或Wolfe规则等。设无约束优化问题:minf(x), x∈Rn\minf(x),{\kern1pt}\,x\in{R^n}minf(x),x∈Rn参数迭代过程:xk+1←xk+αkdkx_
- 统计机器学习-感知机
又双叒叕苟了一天
感知机是二分类的线性分类模型,即通过一个超平面将数据集分割在两侧,同在一个侧的为同一个分类,一般上侧的为正例,下侧的为负例。感知机的定义假设输入空间(特征空间)是,输出空间是。输入表示实例的特征向量,对应于输入空间(特征空间)的点;输出表示实例的类别。由输入空间到输出空间的如下函数称为感知机。其中,和为感知机模型参数,叫做权值或权值向量,叫做偏置,表示和的内积。是符号函数,即并且假设数据是完全线性
- 牛顿法与拟牛顿法
Nie_Xun
linux运维服务器
文章目录牛顿法&拟牛顿法1牛顿法2拟牛顿法2.1对称秩1校正2.2DFP2.3BFGS牛顿法&拟牛顿法设无约束优化问题:minf(x), x∈Rn\minf(x),{\kern1pt}\,x\in{R^n}minf(x),x∈Rn1牛顿法基本思想,通过泰勒二阶展开,通过对泰勒展开求导,并令其等于0,从而求得极小值。将f(x)f(x)f(x)在xkx_kxk处进行泰勒展开:f(x)≈f(xk)+Δ
- 最优化方法之梯度下降法和牛顿法
thatway1989
算法分析机器学习深度学习线性代数
大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。最常见的最优化方法有梯度下降法、牛顿法。最优化方法:最优化方法,即寻找函数极值点的数值方法。通常采用的是迭代法,它从一个初始点x0开始,反复使用某种规则从x.k移动到下一个点x.k+1,直至到达函数的极值点。这些规则一般会利用一阶导数信息即梯度,或者二阶导数信息即Hessian矩阵。算
- [计算机数值分析]牛顿法求解方程的根
Spring-_-Bear
武理四年c++数值分析牛顿迭代法迭代求方程根
Spring-_-Bear的CSDN博客导航对于方程f(x)=0f(x)=0f(x)=0设已知它的近似根xkx_{k}xk,则函数f(x)f(x)f(x)在点xkx_{k}xk附近可用一阶泰勒多项式p(x)=f(xk)+f′(xk)(x−xk)p(x)=f(x_{k})+f'(x_{k})(x-x_{k})p(x)=f(xk)+f′(xk)(x−xk)来近似,因此方程f(x)=0f(x)=0f(x
- 牛顿迭代法例题 matlab,牛顿迭代法-matlab程序(解线性方程组)
nfs king
牛顿迭代法例题matlab
牛顿迭代法matlab程序(解线性方程组)作者:佚名来源:转载发布时间:2009-3-716:55:53减小字体增大字体1.功能本程序采用牛顿法,求实系数高次代数方程f(x)=a0xn+a1xn-1+…+an-1x+an=0(an≠0)(1)的在初始值x0附近的一个根。2.使用说明(1)函数语句Y=NEWTON_1(A,N,X0,NN,EPS1)调用M文件newton_1.m。(2)参数说明An+
- 牛顿法求极值
CDSN之父
python算法大数据列表excel
1,问题叙述用牛顿法求解下面问题初始点取为=(-2,-1)=(-2,-1),请输出第10次和第50次迭代的结果,f()和,f().2,详细实现:2.1、导入依赖包importmathimportmatplotlib.pyplotaspltimportnumpyasnpfromsympyimport*importxlwtx1,x2,t=symbols('x1,x2,t')#设置变量符号2.2、定义函
- 二、自然语言处理发展历程
智享AI
深度学习自然语言处理
1.自然语言处理发展历程自然语言处理的发展历程经历了兴起阶段、符号主义、连接主义和深度学习阶段。兴起阶段:自然语言处理的萌芽期,代表人物包括图灵和香农。符号主义:自然语言处理的发展器,代表任务是乔姆斯基和他的生成文法。连接主义:自然语言处理的发展器,代表方法为统计机器学习。深度学习:自然语言处理的鼎盛期,代表人物为深度学习三巨头:YoshuaBengio、YannLeCun、GeoffreyHin
- LeetCode 第 69 题:使用牛顿法求解平方根
李威威
传送门:69.x的平方根。实现intsqrt(intx)函数。计算并返回x的平方根,其中x是非负整数。由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。示例1:输入:4输出:2示例2:输入:8输出:2说明:8的平方根是2.82842...,由于返回类型是整数,小数部分将被舍去。二分法思路:使用二分查找,特别注意:应该返回右边端点。Python代码1:classSolution:#二分法d
- 非线性最小二乘问题的数值方法 —— 从高斯-牛顿法到列文伯格-马夸尔特法 (I)
wzf@robotics_notes
数值计算方法算法机器学习机器人
Title:非线性最小二乘问题的数值方法——从高斯-牛顿法到列文伯格-马夸尔特法(I)文章目录前言I.从高斯-牛顿法II.到阻尼高斯-牛顿法III.再到列文伯格-马夸尔特法1.列文伯格-马夸尔特法的由来2.列文伯格-马夸尔特法的说明说明一.迭代方向说明二.近似于带权重的梯度下降法说明三.近似于高斯-牛顿法3.列文伯格-马夸尔特法的调参拟合程度评估以近似拟合视角调参以表现特性视角调参调参算法4.列文
- 非线性最小二乘问题的数值方法 —— 从高斯-牛顿法到列文伯格-马夸尔特法 (II, Python 简单实例)
wzf@robotics_notes
数值计算方法算法机器学习机器人python
Title:非线性最小二乘问题的数值方法——从高斯-牛顿法到列文伯格-马夸尔特法(II,Python简单实例)姊妹博文非线性最小二乘问题的数值方法——从高斯-牛顿法到列文伯格-马夸尔特法(I)文章目录0.前言1.最优问题实例2.列文伯格-马夸尔特法(Levenberg-MarquardtMethod)计算3.结果显示4.结论0.前言本篇博文作为对前述“非线性最小二乘问题的数值方法——从高斯-牛顿法
- 非线性最小二乘问题的数值方法 —— 从牛顿迭代法到高斯-牛顿法 (实例篇 V)
wzf@robotics_notes
数值计算方法机器人算法机器学习
Title:非线性最小二乘问题的数值方法——从牛顿迭代法到高斯-牛顿法(实例篇V)姊妹博文非线性最小二乘问题的数值方法——从牛顿迭代法到高斯-牛顿法(I)非线性最小二乘问题的数值方法——从牛顿迭代法到高斯-牛顿法(II)非线性最小二乘问题的数值方法——从牛顿迭代法到高斯-牛顿法(III)非线性最小二乘问题的数值方法——从牛顿迭代法到高斯-牛顿法(IV)↑\uparrow↑理论部分↓\downarr
- 牛顿法和拟牛顿法介绍
格兰芬多_未名
凸优化算法
最优化笔记,主要参考资料为《最优化:建模、算法与理论》文章目录一、经典牛顿法(1)迭代格式(2)收敛性二、拟牛顿法(1)割线方程(2)BFGS公式(3)BFGS全局收敛性参考资料梯度法仅仅依赖函数值和梯度的信息(即一阶信息),如果函数f(x)f(x)f(x)充分光滑,则可以利用二阶导数信息构造下降方向dkd^kdk.牛顿类算法就是利用二阶导数信息来构造迭代格式的算法.由于利用的信息变多,牛顿法的实
- 最优化 | 一维搜索与方程求根 | C++实现
CHH3213
数学c++最优化一维搜索牛顿法
文章目录参考资料前言1.二分法求根1.1[a,b]区间二分法求根1.1.1原理1.1.2C++实现1.2区间右侧无穷的二分法求根1.3求含根区间2.牛顿法求根2.1原理2.2c++实现3.梯度下降法求根3.1c++实现4.一维搜索的区间4.1一般一维搜索方法4.2黄金分割法(0.618)4.2.1原理4.2.2c++实现4.3抛物线法4.3.1原理4.3.2c++实现4.3.3改进4.3.4c++
- 最优化 | 无约束优化方法 | C++实现
CHH3213
数学c++数学数值分析最优化
文章目录参考资料1.前言2.梯度下降法2.1原理2.2c++实现2.3共轭梯度法3.牛顿法3.1原理3.2c++实现4.模拟退火算法4.1原理4.2c++实现5.遗传算法参考资料https://blog.csdn.net/tangshishe/article/details/116670314无约束优化方法模拟退火算法基于matlab模拟退火算法求解函数极值问题1.前言无约束问题是指只有优化目标,
- 2019-09-12
Simoner
LeetCode算法题15:题目描述解题思路:sqrt是内置函数,通过该函数可以直接得到一个数的平方根;还有一种思路就是牛顿迭代法,首先确定一个值re,然后不断令re等于re和x/re的平均数,通过不断迭代后,可以得到一个比较精确的平方根值。本题也可以通过二分法来做,不过相对于牛顿法要麻烦一点。JS代码1知识点补充:牛顿迭代法一种用于找到实数函数的根的近似值的方法,假设有一个连续的函数,其在x轴上
- 凸优化: 障碍函数法
QQ_AHAO
凸优化算法机器学习
上一节讲到了等式消除的牛顿法,这一节我们讲一般约束问题的障碍函数法。首先我们利用对数阀函数来近似替代示性函数,用来消去不等式约束。最终使得问题变为等式约束的牛顿法,然后消除法消去等式约束,再利用牛顿法进行迭代求解。例题:求解过程:以上都是笔者个人学习方法,如有不妥之处,欢迎大家批判指正,后续有时间,笔者会分享更多的凸优化学习方法给大家。
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,