代码随想录
1. 思路
从后向前判断,如果不呈现单调递增的状态,后一位变成9,前一位-1。这里局部最优是每两位的最优解,从后向前线性遍历能得到全局最优。
但是有一点没有想清楚。如果出现了上述的两位数倒序情况,之后的所有数字都应该变成9。例如52583,最小的递增数是49999。中间三位其实是递增的,但是在52调整成49后,后续的所有数都应该是9,因此应该是在从头开始最先出现倒序之后全部调整成9。
方法是记录flag。flag对于多重线性完成的任务有效果,先记录,最后再遍历一遍完成调整。
至于为什么从头开始最先出现倒序但不从头开始遍历,就是因为调整的过程依赖于后面的数字(如果倒序,前一位-1),因此必须从后向前遍历。
2. 方法
巧用to_string和stoi,并且,因为整数str的asc码也是连续的,因此'9'-1 = ‘8’。
class Solution {
public:
int monotoneIncreasingDigits(int n) {
string strnum = to_string(n);
int flag = strnum.size();
for(int i = strnum.size()-1; i>0; i--){
if(strnum[i-1]>strnum[i]){
flag = i;
strnum[i-1]--;
}
}
for(int i=flag; i
968. 监控二叉树
1. 思路
本题的核心思路为,从叶子到源头进行二叉树搜索,满足下面的尽量不放摄像头这个原则。回溯至源头后,摄像头的个数就是最少的。严格的数学证明有些困难,也不必要。
如何判断是否该放置摄像头,可以通过叶子的状态来判断。分别是:
1-有摄像头,2-有覆盖,0-没有覆盖
(1)如果孩子都有覆盖,不放摄像头。注意它的前提是,可以被再往上的摄像头覆盖。因此头节点可能因为这种情况而丢失覆盖,因为没有再往上的节点了。因此,需要最后判断头节点有没有被覆盖。
(2)如果有一个孩子没有覆盖,放摄像头。
(3)如果有一个孩子有摄像头,不放摄像头,但改成被覆盖。
最后,叶子之下的空节点,由于不想让叶子被放摄像头,呈现没有被覆盖但没有摄像头的状态,因此将空节点调成全部被覆盖。注意不能在叶子节点下面放摄像头,因为想让叶子呈现空状态。
class Solution {
public:
int result;
int traversal(TreeNode* cur){
if(cur==NULL) return 2;
int left = traversal(cur->left);
int right = traversal(cur->right);
// 左右孩子都有覆盖
if (left==2 && right==2){
return 0;
}
// 左右孩子有一个没有覆盖,放摄像头
if (left==0 || right==0){
result++;
return 1;
}
// 左右孩子有一个摄像头,不放
if (left==1 || right==1){
return 2;
}
return -1;
}
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};
你可能感兴趣的:(贪心算法,算法)
- LeetCode刷题记录No.1:两数之和
Cherish0719
leetcodeleetcodepython
#写在前面:代码和算法能力差,决定开始刷题为了找到好工作,坚持每天刷题打卡记录!1.两数之和给定一个整数数组nums和一个目标值target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。示例:给定nums=[2,7,11,15],target=9因为nums[0]+nums[1]=2+7=9所以返回[
- ⭐算法OJ⭐最佳买卖股票时机【贪心算法 + 动态规划】(C++实现)Best Time to Buy and Sell Stock 系列 I,II,III,IV
Vitalia
算法OJ算法贪心算法动态规划
贪心人生,贪心算法。今天我们来介绍四道和“股票买卖”相关的题目,用到的思想包括贪心算法和动态规划。这个系列的题目乍一看很难,但其实算是这两个类型中相对容易理解的题目,因此在面试中被考察的频率也更高。让我们逐一分析吧!文章目录121.BestTimetoBuyandSellStock122.BestTimetoBuyandSellStockII123.BestTimetoBuyandSellStoc
- TCP如何保证服务的可靠性
TABE_
计算机网络tcp/ip网络网络协议可靠性
这里写目录标题确认应答超时重传流量控制滑动窗口机制概述发送窗口和接收窗口的工作原理几种滑动窗口协议1比特滑动窗口协议(停等协议)后退n协议选择重传协议采用滑动窗口的问题(死锁可能,糊涂窗口综合征)死锁如何解决死锁问题糊涂窗口综合症如何解决糊涂窗口综合征?拥塞控制为什么需要拥塞控制拥塞窗口拥塞控制算法慢启动与拥塞避免(TCPTahoe版本)快速重传和快速恢复(TCPReno版本)拥塞控制和流量控制的
- 【电网重构】基于PSO粒子群优化的IEEE33电网重构算法matlab仿真
Simuworld
MATLAB较复杂算法仿真案例重构matlabPSO粒子群优化IEEE33电网重构
目录1.算法仿真效果2.MATLAB源码3.算法概述4.部分参考文献1.算法仿真效果matlab2022a仿真结果如下:2.MATLAB源码%****************************************************************************************%订阅用户可以获得任意一份完整代码,私信博主,留言
- 密码算法分类
Long._.L
密码算法算法学习笔记密码学
文章目录对称算法介绍定义与原理特点与优势挑战与限制密钥管理与分发对称加密算法举例非对称算法介绍定义与原理特点与优势挑战与限制相关名称解释非对称加密和非对称签名的区别密文传输过程非对称加密算法举例哈希算法介绍定义与原理特点与优势挑战与限制性能与优化哈希算法介绍流密码介绍基础知识加密方式应用实例优势和限制相关概念块密码介绍基础知识加密方式应用实例优势和限制相关概念对称算法介绍对称加密算法是一种使用相同
- 信息学奥赛一本通1009
昏沉之夜
c++
哈哈,技术含量也不过如此,输入被除数和除数,求商和余数,我们要知道,除号在c++中是用/来代替的,但是余数咋求呢?我们要用取模运算来求,模在c++中是用%来代替的,知道了这些知识点,问题就迎刃而解了!#includeusingnamespacestd;inta,b,c,d;intmain(){cin>>a>>b;c=a/b;d=a%b;cout<
- 嵌入式学习笔记-卡尔曼滤波,PID,MicroPython
tt555555555555
面经嵌入式学习笔记学习笔记嵌入式
文章目录卡尔曼滤波卡尔曼滤波的核心思想卡尔曼滤波的数学模型1.状态转移模型(预测系统状态)2.观测模型(预测测量值)卡尔曼滤波的五个关键步骤1.预测状态2.预测误差协方差3.计算卡尔曼增益4.更新状态5.更新误差协方差卡尔曼滤波算法步骤总结代码实现(Python示例)PID调节总结MicroPython示例代码:控制LED灯并连接WiFi1.硬件准备2.连接方式3.示例代码代码说明开发环境搭建今天
- 算法研究员技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
一、基础阶段:构建算法与数学根基数据结构与基础算法数据结构:数组、链表、栈、队列、哈希表、树(二叉搜索树、堆、字典树)、图等。基础算法:排序(快速排序、堆排序)、查找(二分查找)、递归与分治、贪心算法、简单动态规划(背包问题)、字符串匹配(KMP、Rabin-Karp)、图遍历(BFS/DFS)等。实践方法:通过LeetCode等平台刷题(如“剑指Offer”系列),掌握算法原理与代码实现。数学基
- 规控算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
规控算法工程师技术图谱与学习路径规控算法工程师(规划与控制算法工程师)是自动驾驶领域的核心岗位之一,涉及路径规划、行为决策、运动控制等多个技术模块。以下为技术图谱与学习路径的整合,结合行业需求和技术发展趋势。一、技术图谱核心模块数学基础线性代数:矩阵运算、向量空间、特征值分解(用于控制系统建模与优化)。微积分:梯度下降、泰勒展开、动态系统建模(支持控制算法推导)。概率论与统计学:贝叶斯理论、马尔可
- 大模型算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
介绍:大模型算法工程师是指在开发和部署复杂的机器学习模型、深度学习模型或其他大规模模型的专业人员。他们的主要职责和技能要求包括:职责:设计、开发和优化大规模机器学习或深度学习模型,解决复杂的业务问题。负责整个模型开发生命周期,包括数据清洗、特征工程、模型选择、训练和部署。与数据科学家、工程团队和产品团队合作,理解业务需求并将算法转化为实际产品。对模型性能进行评估和优化,确保模型的准确性、效率和可扩
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 机器学习——KNN算法实战—手写数字识别
巷955
机器学习算法人工智能
原理简述:KNN算法是机器学习中的一种基础的分类回归算法,选择距离自己最近的几条数据,依据最邻近的数据性质来估测自身的性质。下面我们开始实战,制作手写数字识别模型:一、cv2创建模型1、导入相关的库,这里我们用numpy和cv2两个库importnumpyasnpimportcv22、导入数据,并转化灰度图像img=cv2.imread('digits.png')gray=cv2.cvtColor
- C/C++算法编程竞赛基础算法篇:枚举、模拟和递归
BoFeather
C/C++算法学习之路c语言c++算法
目录前言这个栏目是对我算法学习过程的同步记录,我也希望能够通过这个专栏加深自己对编程的理解以及帮助到更多像我一样想从零学习算法并参加竞赛的同学。在这个专栏的文章中我会结合在编程过程中遇到的各种问题并提出相应的解决方案。当然,如果屏幕前的你有更好的想法或者发现的错误也欢迎交流和指出!不喜勿喷!不喜勿喷!不喜勿喷!那么事不宜迟,我们马上开始吧!一、枚举1.基本介绍2.代码示例二、模拟1.基本介绍2.代
- 推荐算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务推荐算法学习算法
推荐算法工程师的技术图谱和学习路径可以从多个维度进行概述,可以总结如下:一、技术图谱推荐算法工程师需要掌握的技术栈主要分为以下几个方面:数学基础:微积分、线性代数、概率论与统计学是推荐算法的基础,用于理解模型的数学原理和优化算法。高等数学、最优化理论、几何和图论等知识对于复杂模型的设计和优化至关重要。编程与数据结构:熟练掌握Python、Java等编程语言,具备良好的编程习惯和代码优化能力。掌握数
- MOSN 基于延迟负载均衡算法——走得更快,期待走得更稳
go网关负载均衡延迟加载开源
文|纪卓志(GitHubID:jizhuozhi)京东高级开发工程师MOSN项目Committer专注于云原生网关研发的相关工作,长期投入在负载均衡和流量控制领域前言这篇文章主要是介绍MOSN在v1.5.0中新引入的基于延迟的负载均衡算法#2253。首先会对分布式系统中延迟出现的原因进行剖析,之后介绍MOSN都通过哪些方法来降低延迟,最后构建与生产环境性能分布相近的测试用例来对算法进行验证。在开始
- 深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
@Mr_LiuYang
计算机视觉基础归一化正则化NormlizationBatchNormLayerNormInstanceNromGroupNorm
深度学习pytorch之22种损失函数数学公式和代码定义深度学习pytorch之19种优化算法(optimizer)解析深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用摘要归一化(Normalization)是提升模型性能、加速训练的重要技巧。归一化方法可以帮助减少梯度消失或爆炸的问题,提升模型的收敛速度,且对最终模型的性能有显著影响。本文将以PyTorc
- 通俗易懂的分类算法之决策树详解
clownAdam
分类决策树数据挖掘算法
通俗易懂的分类算法之决策树详解1.什么是决策树?决策树是一种像树一样的结构,用来帮助我们对数据进行分类或预测。它的每个节点代表一个问题或判断条件,每个分支代表一个可能的答案,最后的叶子节点就是最终的分类结果。举个例子:假设你要判断一个水果是苹果还是香蕉,你可以问一些问题:它是红色的吗?如果是→可能是苹果。如果不是→继续问下一个问题。它是长条形的吗?如果是→可能是香蕉。如果不是→可能是其他水果。这个
- 人工智能时代的伦理挑战与隐私保护
经海路大白狗
狗哥梦话职场人工智能
随着人工智能技术的迅猛发展,我们不得不正视其带来的伦理挑战和隐私保护问题。人工智能的应用已经深入到社会的方方面面,从医疗健康到金融服务,从教育到娱乐,无所不在。然而,与其广泛应用相伴随的是数据隐私泄露、算法歧视性和信息透明度不足等问题,这些问题不仅仅影响到个人权利,也损害了社会的公平和信任。1.AI技术的伦理挑战在AI技术快速发展的同时,一些伦理问题逐渐显现出来。例如,“大数据杀熟”现象,即通过分
- 大数据与人工智能:数据隐私与安全的挑战_ai 和 数据隐私
程序员七海
大数据人工智能安全
前言1.背景介绍随着人工智能(AI)和大数据技术的不断发展,我们的生活、工作和社会都在不断变化。这些技术为我们提供了许多好处,但同时也带来了一系列挑战,其中数据隐私和安全是最为关键的之一。数据隐私和安全问题的出现,主要是因为大数据技术的特点和人工智能算法的运行过程。大数据技术的特点包括数据量的庞大、数据类型的多样性、数据来源的多样性和数据更新的快速性。这些特点使得大数据技术具有强大的计算和分析能力
- C++ STL深度解析:现代编程的瑞士军刀
福鸦
c++c++开发语言算法架构安全
C++STL深度解析:现代编程的瑞士军刀一、从乐高积木看STL哲学想象你面前有两套积木:传统积木:固定形状,只能拼出特定模型(类似传统编程)乐高积木:标准化接口,通过组合创造无限可能(STL设计理念)STL(StandardTemplateLibrary)正是这种模块化思想的完美体现。它通过六大核心组件(容器、算法、迭代器、函数对象、适配器、分配器)的灵活组合,为C++程序员提供了高效编程的终极武
- 基于DeepSeek 的图生文最新算法 VLM-R1
AI算法网奇
深度学习宝典大模型人工智能计算机视觉
目录一、算法介绍二算法部署三模型下载四算法测试五可视化脚本一、算法介绍VLM-R1:稳定且可通用的R1风格大型视觉语言模型自从Deepseek-R1推出以来,出现了许多专注于复制和改进它的作品。在这个项目中,我们提出了VLM-R1,一种稳定且可通用的R1风格的大型视觉语言模型。具体来说,对于引用表达式理解(REC)的任务,我们使用R1和SFT方法训练了Qwen2.5-VL。结果表明,在域内测试数据
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 矩阵理论与应用:矩阵范数
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
矩阵理论与应用:矩阵范数1.背景介绍1.1问题的由来矩阵范数在数学、工程、物理以及计算机科学等多个领域都有着广泛的应用。它提供了一种衡量矩阵大小或者矩阵变换的影响程度的方法。矩阵范数的概念对于理解矩阵的性质、数值稳定性、以及在机器学习和信号处理中的矩阵操作至关重要。例如,在数值线性代数中,矩阵范数用于评估算法的收敛性、误差估计和稳定性。在信号处理中,它可以用来评估信号的失真程度或者噪声的影响。1.
- 蓝桥杯月赛--灯笼猜谜
2301_80673831
蓝桥杯职场和发展
算法双周赛#include#include#includeusingnamespacestd;intmain(){intN,M;cin>>N>>M;vector>intervals(N);for(inti=0;i>intervals[i].first>>intervals[i].second;}//初始化intleft=1,right=1;longlongfatigue=0;for(inti=0;
- C++数组综合训练:插入删除/进制转换/排序算法
卫青~护驾!
算法数据结构c++进制转换
第一部分:数组基础操作强化1.1数组元素插入(动态位移版)//示例:在指定位置插入元素inta[11],i,n,x,y;cin>>n;//当前元素数量for(i=0;i>a[i];cin>>x>>y;//输入插入位置(从1开始计数)和元素值x--;//转换为数组下标//关键算法:从后向前移动元素(时间复杂度O(n))for(i=n;i>=x;i--){a[i+1]=a[i];//元素后移}a[x]
- RSA算法
cliff,
密码学密码学安全学习笔记
文章目录1.前言2.基本概要2.1欧拉函数2.2模反元素2.3RSA3.加密过程3.1参数选择3.2流程3.3习题4.数字签名4.1签名算法4.2攻击4.2.1一般攻击4.2.2利用已有的签名进行攻击4.2.3攻击签名获得明文4.3应用1.前言学习视频:【RSA加密算法】|RSA加密过程详解|公钥加密|密码学|信息安全|_哔哩哔哩_bilibili2.基本概要2.1欧拉函数具体知识点学习《信息安全
- 2小时学懂【多元统计分析】——聚类分析(R语言)
木小鹿
多元统计R语言代码机器学习算法人工智能开发语言数据挖掘数据分析
聚类分析是一种无监督学习方法,用于将相似的观测值(或对象)分组到集群中。下面我将展示如何使用几种常见的聚类方法:K-均值(K-means)、层次聚类(HierarchicalClustering)和DBSCAN。1.K-均值聚类(K-meansClustering)K-均值是一种迭代的聚类算法,它将数据划分为K个预定义的集群。#加载需要的包library(cluster)#假设我们有一些二维数据s
- YOLO在PiscTrace上检测到数据分析
那雨倾城
PiscTraceYOLO计算机视觉视觉检测数据分析信息可视化
在现代计算机视觉领域,实时视频数据的检测与分析对于安全监控、交通管理以及智能制造等领域具有重要意义。YOLO(YouOnlyLookOnce)作为一种高效的目标检测算法,能够在保持高精度的同时实现实时检测。而PiscTrace作为一款集成了OpenCV、MiDaS和YOLO技术的桌面应用,为用户提供了全面的图像与视频流处理解决方案。本文将探讨如何利用YOLO进行实时视频数据检测,并结合PiscTr
- 聚类分析tensorflow实例_新手必看的机器学习算法集锦(聚类篇)
道酝欣赏
继上一篇《机器学习算法之分类》中大致梳理了一遍在机器学习中常用的分类算法,类似的,这一姊妹篇中将会梳理一遍机器学习中的聚类算法,最后也会拓展一些其他无监督学习的方法供了解学习。1.机器学习机器学习是近20多年兴起的一门多领域交叉学科,它涉及到概率论、统计学、计算机科学以及软件工程等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类能从数据中自动分析获得规律
- 【深度学习·命运-27】NAS四部曲end-NASNet
华东算法王
深度学习·命运深度学习人工智能
NASNet(NeuralArchitectureSearchNetwork)是由GoogleBrain团队提出的另一种神经架构搜索(NAS)方法,它通过自动化搜索神经网络的结构,找到了具有竞争力的神经网络架构,尤其在计算机视觉任务(如图像分类)中表现非常优秀。NASNet是基于进化算法的架构搜索方法,与其他NAS方法相比,它具有更高的效率,并且能够生成更加优化的网络架构。1.NASNet的背景与
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。