- ubuntu18.04安装vnc
魔法白糖
ubuntuubuntussh
最近很多小伙伴都在私信问怎么在ubuntu上安装vnc,下面我来给大家提供一个思路,如有不足的地方,欢迎大家私信,让我们相互学习,共同进步!一、配置VNCServer打开终端,依次输入以下指令:gsettingssetorg.gnome.Vinorequire-encryptionfalsegsettingssetorg.gnome.Vinoprompt-enabledfalsegsettings
- 如何让ChatGPT生成Midjourney提示词
AI观星台
人工智能stablediffusionmidjourney
关注文章下方公众号,即可免费获取AIGC最新学习资料导读:最近AI绘画非常的火,今天我们看ChatGPT如何生成Midjourney提示词,让AI教AI做事。本文字数:900,阅读时长大约:3分钟正如Midjourney的官方网站报道的那样,提供工作提示(Prompt)是一项碰运气的业务。从单个表情符号或单词都可以生成图像,但自然地结果可能并不完全符合用户的预期。一般来说,提示越长、越详细,结果就
- 大语言模型(LLM)如何实现上下文的长期记忆?
引言大语言模型(LargeLanguageModels,LLMs),如GPT-4、Claude和LLaMA等,已经在自然语言处理领域展现出卓越的能力。然而,它们在实际应用中常常面临一个核心问题:如何实现上下文的长期记忆?传统LLM的上下文长度通常受限于计算资源和架构设计(如注意力机制),这限制了其处理长文档或保持复杂对话连续性的能力。本篇文章将深入探讨大语言模型的上下文记忆问题,分析其技术难点,并
- 使用conda update python将python3.6更新到python3.7版本出现bug:
苹果酱0567
面试题汇总与解析课程设计springbootlayui毕业设计java
使用condaupdatepython将python3.6更新到python3.7版本出现bug:1)anacondanavigator无法打开,2)Jupyternotbook一直显示无法连接服务器解决办法:Anacondaprompt下操作:>condaupdate--lla>anaconda-navigator--resetqtpy.PythonQtError:NoQtbindingscou
- 掌握AI Prompt的艺术:如何有效引导智能助手
黑金IT
langchain人工智能promptlangchainAI编程
开头叙述:在人工智能的世界里,Prompt(提示)是沟通人类意图与机器理解之间的桥梁。它不仅是一串简单的文字,而是一把钥匙,能够解锁AI模型的潜力,引导它们执行复杂的任务。本文将探讨Prompt的重要性,并展示如何通过精心设计的Prompt来提升AI助手的效率和准确性。无论是在聊天、会议总结还是日程管理中,正确的Prompt都能让AI助手成为你工作中的得力助手。让我们一起深入了解Prompt的力量
- prompt技术结合大模型 生成测试用例
小赖同学啊
自动化测试(apppcAPI)pythonprompt测试用例
要利用prompt技术结合大模型对目标B/S架构软件系统进行测试,以下以使用Python调用OpenAI的GPT模型进行功能测试用例生成,再借助Selenium库执行测试为例,给出一个完整的实现示例。前提条件安装依赖库:你需要安装openai和selenium库,可以使用以下命令进行安装:pipinstallopenaiselenium获取OpenAIAPI密钥:你需要在OpenAI平台上注册并获
- conda-pack迁移虚拟环境
哎呀呀,知识来我的脑子里
conda
从源电脑中迁移anaconda的环境到目标电脑,首先两个电脑都安装了anaconda。一、源电脑的环境打包使用AnacondaPrompt操作1.安装conda-pack工具condainstallconda-pack2.确定环境condaenvlist找到你想要打包环境名。比如我的环境名是Py363.打包环境condapack-nPy36-oPy36.tar.gz4.将打包环境拷贝到U盘环境打包
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- 深度剖析DeepSeek本地部署:技术、实践与优化策略
Abossss
AI论文pythonai人工智能
一、引言1.1研究背景与意义近年来,人工智能技术以迅猛之势蓬勃发展,成为推动各行业变革的核心力量。其中,大语言模型(LLMs)作为人工智能领域的关键技术,在自然语言处理、智能客服、内容创作等众多领域展现出了强大的应用潜力,引发了学术界和产业界的广泛关注。OpenAI的GPT系列模型凭借其出色的语言理解与生成能力,在全球范围内掀起了AI应用的热潮;Google的BERT模型则在自然语言理解任务中取得
- 《AI对话秘籍:5个Prompt Engineering核心技巧让DeepSeek输出质量翻倍》
Athena-H
PromptEngineering人工智能promptchatgptgptai
引言随着自然语言处理技术的飞速发展,像ChatGPT这样的AI对话系统已经广泛应用于客服、教育、创作等多个领域。然而,如何高效地与这些语言模型进行交互,获得准确、相关且高质量的回复,成为了应用中的一个关键挑战。这时,PromptEngineering(提示词工程)便成为了一项必不可少的技能。PromptEngineering的核心目标是通过优化与模型的输入互动方式,让模型生成更加符合预期的输出。在
- 通义模型Prompt调优的实用技巧
大模型实战
prompt
1.目录1.prompt工程简介2.Prompt设计2.1Prompt主要构成要素2.2Prompt编写策略策略一:对较难被准确遵循的复杂规则可拆分为多条规则,有助于提升效果策略二:适当冗余关键信息策略三:使用分隔符给Prompt分段策略四:增加学习示例策略五:编写清晰地说明-指定任务所需的步骤策略六:让大模型反思自己的推理过程策略七:语音场景下的prompt要点策略八:判断型的任务,建议先给依据
- 大模型prompt实例:知识库信息质量校验模块
写代码的中青年
大模型prompt人工智能python大模型LLM
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factory的指令增
- 3. 意图分类prompt优化项目(实操版)
姚瑞南
prompt系列课程prompt实战应用案例分类prompt人工智能AIGC
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)本文简介:意图分类prompt优化项目(实操版)项目背景项目现状和目标意图识别prompt分析制定优化策略prompt调优效果及收益评估目录1.项目背景2.指标现状3.业务目标4.问
- 1.5 企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能promptchatgptlangchaingpt
企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径一、技术演进金字塔:四阶技术如何构建AI新范式▲预训练│(万亿参数基建)├─大模型微调│(领域知识注入)├─AI智能体│(任务自动化)└─提示工程(零样本交互)1.1技术层级关系与适用场景技术阶段技术门槛算力需求企业应用成熟度典型工具链提示工程★☆☆☆☆CPU即可90%+企业已部署LangChain、AutoGPT
- 【prompt示例】智能客服+智能质检业务模版
姚瑞南
prompt实战应用案例prompt前端
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)整体结构说明:序号结构说明备注1prompt主体提示词主体主要包含定义角色+背景描述+目标+输出内容2变量变量主要提取知识库文档流程里涉及的⼀些判断项,需要接口的部分3注意事项常规注
- langchain学习笔记之小样本提示词Few-shot Prompt Template
静静的喝酒
langchain深度学习人工智能大模型开发langchain
langchain学习笔记之小样本提示词引言Few-shotPromptTemplates\text{Few-shotPromptTemplates}Few-shotPromptTemplates简单介绍示例集创建创建ExamplePrompt\text{ExamplePrompt}ExamplePrompt与ExampleSelector\text{ExampleSelector}Example
- 【环境配置】Jupyter Notebook切换虚拟环境
Bosenya12
jupyteridepython
在JupyterNotebook中是可以切换虚拟环境的,以下是几种常见的方法:方法一:使用nb_conda_kernels扩展(适用于Anaconda环境)安装如果你使用的是Anaconda环境,首先确保你已经安装了nb_conda包。如果没有安装,在AnacondaPrompt中运行以下命令:condainstallnb_conda然后安装nb_conda_kernels:condainstal
- 大模型会替代哪些工作岗位?
中年猿人
人工智能ai学习
引言本文主要探讨了大模型(LLMs)对就业市场的影响。包括了介绍那些已经受到大模型影响的行业,对大模型将要产生的影响,以及如何更好的监管大模型应用进行了讨论。文章还探讨了作为个人和企业,如何适应大模型带来的快速变化。01大模型已经影响的行业大模型已经开始重塑各个行业,对工作角色和行业实践带来了显著的变化。这种影响不仅是理论上的;它在多个领域都有明显体现。受大模型影响最明显的行业之一是客户服务。这个
- 基于开源千文模型(如Qwen、ChatGLM等)实施如何进行动态蒸馏,详细说明操作步骤.
墨者清风
模型训练人工智能技术发展模型动态蒸馏人工智能深度学习语言模型
基于开源千文模型(如Qwen、ChatGLM等)实施如何进行动态蒸馏,详细说明操作步骤.1.动态蒸馏的核心思想动态蒸馏的目标是通过教师模型(通常是一个较大的预训练模型)的输出,指导学生模型(较小的模型)的训练。具体来说:教师模型:提供软标签(softlabels),即概率分布,而不是硬标签(hardlabels)。学生模型:通过模仿教师模型的输出分布,学习更丰富的知识。动态蒸馏:在训练过程中,教师
- 【deepseek】论文笔记--DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
大表哥汽车人
人工智能大语言模型学习笔记论文阅读人工智能deepseek
DeepSeek-R1论文解析1.论文基本信息标题:DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning作者:DeepSeek-AI团队(联系邮箱:research@deepseek.com)发表时间与出处:2024年,AIME2024(人工智能与数学教育国际会议)关键词:ReinforcementLe
- 【前端开发学习笔记17】使用ai
wei387245232
学习笔记
AI的认知&两个工具-认知同步AI早已不是新事物(接受):语音识别,人脸识别,无人驾驶,智能机器人...(包括ChatGPT也是研发了多年的产物)AI本质是智能工具(认识):人工智能辅助,可以提升效率,但不具备思想意识,无法从零到一取代人类工作AI一定会淘汰掉一部分人:但一定会衍生出新的职业方向,逆水行舟,不进则退,学会拥抱变化ChatGPT的基本使用-Prompt优化AI互动中容易出现的问题AI
- LLM大模型中文开源数据集集锦(三)
悟乙己
付费-智能写作专栏LLM大模型开源大模型LLMGPT微调
文章目录1ChatGLM-Med:基于中文医学知识的ChatGLM模型微调1.1数据集1.2ChatGLM+P-tuningV2微调1.3Llama+Alpaca的Lora微调版本2LawGPT_zh:中文法律大模型(獬豸)2.1数据集2.1.1利用ChatGPT清洗CrimeKgAssitant数据集得到52k单轮问答:2.1.2带有法律依据的情景问答92k:2.1.3法律知识问答2.2模型3C
- 大语言模型原理基础与前沿 通过稀疏MoE扩展视觉语言模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿通过稀疏MoE扩展视觉语言模型1.背景介绍在人工智能领域,语言模型和视觉模型的结合已经成为一个重要的研究方向。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等,已经在自然语言处理(NLP)任务中取得了显著的成果。而视觉语言模型(Vision-LanguageModels,VLMs)则通过结合视觉和语言信息,进一步提升了模型在多模态任务中
- conda更换镜像(本地&服务器)
YIZHIYII
condapython服务器机器学习
更换镜像(本地&服务器)一、本地Anaconda更换清华源二、服务器上换Conda的国内源(加速下载)步骤1:修改Conda配置步骤2:清除旧缓存步骤3:测试Conda源一、本地Anaconda更换清华源(1)打开AnacondaPrompt窗口(2)输入命令:condaconfig--showchannels,回车显示当前存在的下载源(3)手动添加镜像源,以清华大学的镜像源为例::condaco
- 使用python调用ollama中的deepseek-r1模型接口
nfenghklibra
ollamadeepseedpythonpythonollamadeepseek
直接上代码#python代码importrequestsimportjsondefgenerate_text(prompt,model="deepseek-r1:7b",base_url="http://localhost:11434"):"""调用Ollama接口生成文本:paramprompt:输入的提示文本:parammodel:使用的模型名称,默认为deepseek-r1:7b:param
- 【AI论文】使用大型推理模型进行竞技编程
东临碣石82
人工智能
摘要:我们的研究表明,将强化学习应用于大型语言模型(LLMs)能显著提升复杂编码和推理任务的性能。此外,我们将两个通用推理模型——OpenAI的o1模型和o3模型的一个早期检查点——与一个特定领域的系统o1-ioi进行了比较。o1-ioi采用了为参加2024年国际信息学奥林匹克竞赛(IOI)而手工设计的推理策略。我们使用o1-ioi实时参加了2024年IOI竞赛,并凭借手工制定的测试时策略取得了第
- 多模态大模型(LMMs)与大语言模型(LLMs)的比较
大F的智能小课
底层技术解析人工智能语言模型
前言现在的大模型分为两大类:大语言模型(LargeLanguageModels,简称LLMs)和多模态大模型(LargeMultimodalModels,简称LMMs)。本文将从基础定义、输入数据、应用场景、训练过程这几方面讨论下两者的区别。基础定义LLMs(LargeLanguageModels,大型语言模型)-深度学习的应用之一,是基于深度学习的大规模机器学习模型,通常由数十亿到数万亿个参数构
- 《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》 第一章
Allen-Steven
python相关应用SD创作实践stablediffusionprompt人工智能
第一章:认识StableDiffusion与Prompt设计基础1.1什么是StableDiffusion:生成原理与核心优势一、颠覆性生成逻辑:从噪声到艺术的魔法逆向降噪原理传统AI绘画:直接生成完整像素StableDiffusion:通过潜扩散模型(LDM),在低维潜空间(LatentSpace)逐步去除噪声,最终解码为高清图像类比解释:如同雕塑家从混沌的大理石中凿出形体,AI在噪声中「雕刻」
- Stable Diffusion 教程基础篇: 如何写出好的prompt,一些技巧和原则
AI想象家
stablediffusionpromptmidjourney人工智能openAIAI作画
StableDiffusion教程-中文AskAIforART·Originaltxt2imgandimg2imgmodes·基础模式之文生图/图生图点击可放大基础入门部分输入一段话,生成一张图。这是AI绘画的核心。入门就是那么简单,不过,这段话怎么写,其实也是有窍门的。在StableDiffusion里面,这段描述也就是Prompt,我们称之为AI的魔法咒语。那么,最开始我们需要怎么做呢?当然是
- 《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》 第三章
Allen-Steven
python相关应用SD创作实践stablediffusionprompt人工智能
第三章:风格化Prompt专题解析3.1写实类:照片级细节的刻画技巧一、物理仿真引擎构建#写实类Prompt标准模板{"主体描述":"精确物种/型号/品牌(如:Mercedes-AMGGTBlackSeries2025款)","材质系统":[ "PBR材质规范(金属度/粗糙度/法线贴图)", "表面瑕疵(划痕0.2级,灰尘密度0.5)"],"光学系统":[ "镜头参数:佳能RF85mmf/1.2L
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不