- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 机器学习 --- 指数族分布
建模君Assistance
数学建模算法算法
一、背景二、高斯分布的指数族形式三、对数配分函数与充分统计量的关系三、极大似然估计与充分统计量四、最大熵角度总结最后数学建模精选资料共享,研究生学长数模指导,建模比赛思路分享,关注我不迷路!建模指导,比赛协助,有问必答,欢迎打扰
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录6.2最大熵模型6.2.1最大熵原理6.2.3最大熵模型的学习6.2.4极大似然估计《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- 最大熵阈值python_李航统计学习方法(六)----逻辑斯谛回归与最大熵模型
weixin_39669638
最大熵阈值python
本文希望通过《统计学习方法》第六章的学习,由表及里地系统学习最大熵模型。文中使用Python实现了逻辑斯谛回归模型的3种梯度下降最优化算法,并制作了可视化动画。针对最大熵,提供一份简明的GIS最优化算法实现,并注解了一个IIS最优化算法的Java实现。本文属于初学者的个人笔记,能力有限,无法对著作中的公式推导做进一步发挥,也无法保证自己的理解是完全正确的,特此说明,恳请指教逻辑斯谛回归模型逻辑斯谛
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第6章逻辑斯谛回归与最大熵模型6.1逻辑斯谛回归模型6.1.1逻辑斯谛分布6.1.2二项逻辑斯谛回归模型6.1.3模型参数估计6.1.4多项逻辑斯谛回归《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统
- 最大熵原理
北航程序员小C
深度学习专栏机器学习专栏人工智能学习专栏机器学习人工智能算法
最大熵原理最大熵原理是概率模型学习的一个准则,其认为学习概率模型时,在所有可能的概率模型中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,然后在集合中选择熵最大的模型。直观地,最大熵原理认为要选择的概率模型首先必须满足已有的事实,即约束条件。在没有更多信息的情况下,那些不确定的部分都是等可能的。最大熵原理通过熵的最大化来表示等可能性,因为当X服从均匀分布时熵最大。最大熵模型最大熵原
- 最大熵模型
dreampai
直观理解image.png大熵模型在分类方法里算是比较优的模型,但是由于它的约束函数的数目一般来说会随着样本量的增大而增大,导致样本量很大的时候,对偶函数优化求解的迭代过程非常慢,scikit-learn甚至都没有最大熵模型对应的类库。最大熵的思想当你要猜一个概率分布时,如果你对这个分布一无所知,那就猜熵最大的均匀分布;如果你对这个分布知道一些情况,那么,就猜满足这些情况的熵最大的分布。运用最大熵
- 机器学习期末复习总结笔记(李航统计学习方法)
在半岛铁盒里
机器学习机器学习笔记学习方法
文章目录模型复杂度高---过拟合分类与回归有监督、无监督、半监督正则化生成模型和判别模型感知机KNN朴素贝叶斯决策树SVMAdaboost聚类风险PCA深度学习范数计算梯度下降与随机梯度下降SGD线性回归逻辑回归最大熵模型适用性讨论模型复杂度高—过拟合是什么:当模型复杂度越高,对训练集拟合程度越高,然而对新样本的泛化能力却下降了,此时出现overfitting(过拟合)与泛化能力:模型复杂度与泛化
- 1985-A new method for gray-level picture thresholding using the entropy of the histogram
是聪聪黄吖
阈值分割matlab图像处理阈值分割
1论文简介《Anewmethodforgray-levelpicturethresholdingusingtheentropyofthehistogram》是由Kapur于1985年发表在COMPUIERVISION,GRAPHICSANDIMAGEPROCESSING上的论文。该论文首次提出利用最大熵原理计算图像分割阈值,即选取阈值使得图像分割出来的部分的一阶灰度统计的信息量最大(一维熵最大)。
- 特征融合篇 | YOLOv8 引入长颈特征融合网络 Giraffe FPN
迪菲赫尔曼
YOLOv8改进实战YOLOultralyticsGFPNFPNDAMO-YOLO
在本报告中,我们介绍了一种名为DAMO-YOLO的快速而准确的目标检测方法,其性能优于现有的YOLO系列。DAMO-YOLO是在YOLO的基础上通过引入一些新技术而扩展的,这些技术包括神经架构搜索(NAS)、高效的重参数化广义FPN(RepGFPN)、带有AlignedOTA标签分配的轻量级头部以及蒸馏增强。特别地,我们使用MAE-NAS,一种受最大熵原理指导的方法,在低延迟和高性能的约束下搜索我
- 最大熵
豪_34bf
1概述最大熵原理是一种选择随机变量统计特性最符合客观情况的准则,也称为最大信息原理。最大熵原理认为,学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,所以,最大熵原理也可以表述为在满足约束条件的模型集合中选取熵最大的模型。假设离散随机变量X的概率分布是P(X),则其熵是熵满足下列不等式:式中,|X|是X的取值个数,当且仅当X的分布是均匀分
- 统计学习方法笔记之逻辑斯谛模型与最大熵模型
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog逻辑斯谛回归(LogisticRegression)模型是经典的分类方法,而最大熵则是概率模型中学习的一个准则,将其推广到分类问题得到最大熵模型(maximumentropymodel)。两者都属于对数线性模型。逻辑斯谛模型逻辑斯谛分布设是连续随机变量,服从逻辑斯谛分布是指具有以下分布函数和密度函数:其中,是位置参数,为形状参数。逻辑斯谛分布的密度函数
- 2018-04-23 开胃学习数学系列 - 最大熵 Curve Building
Kaiweio
Curvebuildingrevisited我们已经学习了如何使用以下方法,可以建立良好的CDS/IR曲线:(咳咳,我其实是一点都不记得,之前也不理解的,所以还是好好重新学习一次吧)BootstrapanditerationBootstrap和迭代Tensionsplineinterpolation样条插值但是,有一些未解决的问题:whichisabetterstatevariable,zeror
- 基于贝叶斯决策理论的分类器
CHENG-HQ
机器学习机器学习贝叶斯分类器参数估计
基于贝叶斯决策理论的分类器基于贝叶斯决策理论的分类器贝叶斯决策理论1如何衡量分类好坏参数估计1极大似然估计2最大后验概率估计3最大熵估计4非参数估计贝叶斯分类器在现实中的应用1垃圾邮件分类2贝叶斯网络参考文献首先,我们知道机器学习分为监督学习和非监督学习两大类。在监督学习中,我们主要面对的是拟合问题(regression)和分类问题(classification)。在本节中,我们先来了解一下如何使
- 最大熵模型
dreampai
在满足约束条件的模型集合中选取熵最大的模型,即不确定最大熵模型。最大熵模型就是要学习到合适的分布P(y|x),使得条件熵H(P)的取值最大。在对训练数据集一无所知的情况下,最大熵模型认为P(y|x)是符合均匀分布的。image.png
- 机器学习(第8章 信息论模型)
komjay
机器学习机器学习人工智能
一、学习目标1.了解信息论相关定义2.了解熵、最大熵、互信息在机器学习中的运用3.学习信息论优化模型的优化过程二、信息论相关知识信息论之父,也是信息论创始人,香农,将物理学中的熵概念引入到信息论中,引起的影响十分的强大。相关定义有:三、熵、最大熵在机器学习中的应用1.信息量与信息熵的定义要注意,信息量用于描述是一个变量取值的,比如:北京明天天气=下雪。而信息熵用于描述一个变量的,例如北京明天天气。
- GEE机器学习——最大熵分类器案例分析(JavaScript和python代码)
此星光明
机器学习人工智能机器学习ent熵权法最大熵分类gee
最大熵分类器创建最大熵分类器。Maxent用于使用已知存在位置和大量“背景”位置的环境数据来模拟物种分布概率。有关更多信息和引用,请参阅:https://biodiversityinformatics.amnh.org/open_source/maxent/和参考出版物:Phillips等。al.,2004年物种分布建模的最大熵方法,第二十一届国际机器学习会议论文集。输出是一个名为“probabi
- 050B 基于最大熵模型软件(MaxEnt)和ArcGis地理系统的分布区(适生区)预测教程
生信小窝
arcgispython开发语言
课程内容目录(课程标题即课程内容):050B-1视频附带资料下载和密码:软件-数据-地图-文献下载-持续更新050B-2MaxEnt最大熵分布预测软件的下载安装050B-3ArcGis10.2软件的下载安装和参数设置-附带软件包(V3版)050B-4ArcGis10.4软件的下载安装和参数设置-附带软件包050B-5基于MaxEnt和ArcGis地理分布于测的科学分析流程介绍(V3版)050B-6
- 050B 基于最大熵模型软件(MaxEnt)和ArcGis地理系统的分布区(适生区)预测基础教程 更新2022-12
生信小窝
arcgis
050B-1课程附带资料050B-2最大熵模型软件(MaxEnt)的下载安装和不同打开方式演示(电脑参数配置)050B-3ArcGis10.2软件的下载安装和参数设置-附带软件包050B-4ArcGis10.4软件的下载安装和参数设置-附带软件包050B-5SPSS软件的下载安装与激活演示050B-6基于MaxEnt和ArcGis地理分布预测的科学分析流程介绍及参考文献说明050B-7物种分布数据
- 050B-基于最大熵Maxent-ArcGis地理分布预测教程更新内容发布-2022-06
生信小窝
机器学习人工智能maxent最大熵模型
050B-31基于3种不同方法划分适生等级的说明及参考资料讲解050B-32基于MTSPS(maximumtestsensitivity)划分适生等级操作方法演示050B-33关于Suitablehabitatindex,SHi参数说明主要更新内容:提供新的适生等级划分方法和最新中英文参考资料,解决因适生等级划分原因被巨的问题。已更新完整内容:050B-1软件-数据-地图-文献下载-持续更新050
- 最大熵模型
MusicDancing
强化学习机器学习算法人工智能
1.最大熵原理学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型。假设离散随机变量X的概率分布是P(X),则其熵为且满足0<=H(P)<=logN当且仅当X的分布是均匀分布时右边的等号成立,即当X服从均匀分布时,熵最大。直观地,最大熵原理认为要选择地概率模型首先必须满足已有事实(约束条件)。在没有更多信息的情况下,那些不确定的部分都是“等可能的”。通过熵的最大化来表示等可能性
- 自然语言处理相关词条
beck_zhou
算法研究(数据挖掘机器学习自然语言深度学习搜索引擎)自然语言处理语言
NLP领域自然语言处理计算语言学自然语言理解自然语言生成机器翻译文本分类语音识别语音合成中文分词信息检索信息抽取句法分析问答系统自动摘要拼写检查统计机器翻译[编辑]NLP专题隐马尔科夫模型最大熵模型条件随机场数学之美支持向量机机器学习SRILMMoses知网IRSTLMNLTK[编辑]NLP人物冯志伟俞士汶董振东黄昌宁黄曾阳周明姚天顺刘群宗成庆赵铁军詹卫东常宝宝刘挺王海峰哈工大中文信息处理人物谱中
- 最新:基于MAXENT模型的生物多样性生境模拟与保护优先区甄选、自然保护区布局优化评估及论文写作技巧
zmjia111
生态大气人工智能大数据云计算开发语言数据库架构
随着生物多样性全球大会的举办,不论是管理机构及科研单位、高校都在积极准备,根据国家林草局最新工作指示,我国将积极整合、优化自然保护地,加快推进国家公园体制试点,构建以国家公园为主体的自然保护地体系。针对我国目前已有自然保护区普遍存在保护目标不明确、保护成效低下和保护空缺依然存在等问题,科学的鉴定生物多样性热点保护区域与保护空缺显得刻不容缓。最大熵模型(Maxent模型)利用物种的分布与环境数据,采
- 基于maxent最大熵模型和arcgis地理系统对物种的适生区预测教程
生信小窝
ArcGISmaxent最大熵模型最大熵
050A-1软件-数据-地图-文献下载-持续更新050A-2MaxEnt最大熵分布预测软件的下载安装050A-3ArcGis10.2软件的下载安装和参数设置-附带软件包050A-4ArcGis10.4软件的下载安装和参数设置-附带软件包(待更新)050A-5基于MaxEnt和ArcGis地理分布于测的科学分析流程介绍050A-6Wordclim环境数据下载说明-末次盛冰期-当前和未来气候数据050
- Maxent模型学习
m0_61027476
Maxent学习经验分享
Maxent最大熵模型在实际操作做中,容易出现错误,该模型时非常容易上手,但会出现许多错误的模型。特别是大区域预测气候或生物栖息地。总结来说,一个简单的Maxent模型的结果,可以包括几个关键部分:一、模型表现的评估;二、阈值,判断是否有分布;三、预测的分布图;四、物种和环境的关系;五、环境变量对于这个物种分布的影响。一、模型表现评估二、Threshold阈值预测物种分布概率,但有些情况下,也可以
- 使用Maxent模型预测适生区
Odd_guy
SDMs经验分享r语言机器学习
Maxent模型因其在潜在适生区预测中稳健的表现,时下已经成为使用最广泛的物种分布模型。biomod虽然可以通过集成模型的优势来弥补数据量较小的劣势,但是其在使用和运算时间上的优势远不如Maxent,虽然最新的biomod2已经修复了一些bug,不过在使用中仍是会遇到很多问题。1Maxent模型Maxent模型即最大熵模型,与热力学概念类似,”熵“在此的含义为随机变量不确定性的度量,最大熵模型是指
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag