- 模糊综合评价法 (评价类问题)
NON-JUDGMENTAL
数学建模-模型汇总大数据matlab数学建模算法
一.概念模糊综合评价法(FuzzyComprehensiveEvaluation,FCE)是一种将模糊数学与综合评价相结合的方法,常用于处理那些涉及多因素、多指标的复杂评价问题,特别是在处理含有模糊性、主观性的评价问题时。模糊数学模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有这种模糊的现象,如选举
- CTF 竞赛密码学方向学习路径规划
David Max
CTF学习笔记密码学ctf信息安全
目录计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装WattToolkit(Steam++)、机场代理Scoop(Windows用户可选)常用Python库SageMathLinux小工具yafuOpenSSLMarkdown编程基础Python其他编程语言、算法与数据结构(可选)数学基础离散数学与抽象代数复杂性分析密码学的正式学习兴趣的培养做题小技巧系统学习需要了解并
- 抽象代数精解【2】
叶绿先锋
基础数学与应用数学抽象代数人工智能
文章目录群消去律的意义消去律与群的其他性质总结难点与例子例子参考文献群下面由文心一言生成群中的消去律是群论中的一个基本定理,它描述了群中元素之间的一种特殊关系。具体来说,群中的消去律包含左右两个方向,可以表述为:左消去律:若(ab=ac)(ab=ac)(ab=ac)且(a,b,c∈G)(a,b,c\inG)(a,b,c∈G)其中(G)是一个群,则b=c。右消去律:若(ba=ca)(ba=ca)(b
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- 范畴论系列(一)初识范畴
数学
起因写这个系列起源于自己学习编程语言时遇到的问题,研究编程语言不可避免要与数学打交道,自己大学只学过数学分析和高等代数等数学系一年级课程,PLT(ProgrammingLanguageTheroy)需要的数学基础大致为:抽象代数(AbstractAlgebra)、拓扑(Topology)、范畴(CategoryTheory)等代数知识,在阅读相关PL书籍时,深感自己的无力。我又是一个"死磕"的人,
- 幂等性非侵入式实现
十一技术斩
面试mysqljava后端数据库
幂等性今天我们来谈谈什么是幂等性?引用百度百科的解析如下:幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函
- 关于概率论和模糊数学的区别
当像鸟飞向你的山
模糊数学抽象代数
#模糊数学不是伪科学关于模糊数学是伪科学的理论概率论和模糊数学的显而易见的不同的地方如下:首先概率论的基础是康托集,你可以简单理解为集合中的元素只有{0,1}两种状态,他关注的是事件最终的结果,要么发生,要么不发生,而在事前做一个预计,这个叫做概率;而模糊理论的基础是模糊集,集合中的元素状态是0~1的实数,你可以理解为它度量的是事件发生的一个过程。举个例子:比如一个班上总共有10个学生(其中有一个
- 模糊数学 计算机智能,《常用算法之智能计算 (五) 》:模糊计算
慕容隽
模糊数学计算机智能
原标题:《常用算法之智能计算(五)》:模糊计算人们常用“模糊计算”(FuzzyComputing)笼统地代表诸如模糊系统、模糊语言、模糊推理、模糊逻辑、模糊控制、模糊遗传和模糊聚类等模糊应用领域中所用到的诸多算法及其理论。在这些应用系统中,广泛地应用了模糊集理论,并揉和了人工智能的其他手段,因此模糊计算也常常与人工智能相联系。由于模糊计算可以表现事物本身性质的内在不确定性,因此它可以模拟人脑认识客
- 【Android】SDK31 原生api高斯模糊
风起云涌~
androidjavaapache
1,概述高斯模糊数学理论是根据正态分布,对图片进行一遍过滤,本质是一个低通滤波器。在sdk31中,原生提供了两种类型的模糊;Backgroundblur:模糊区域是窗口Blurbehind:模糊区域是整个屏幕API:WindowManager#Backgroundblurandroid.view.Window#setBackgroundBlurRadius(intblurRadius)#Blurb
- 模糊数学在处理激光雷达的不确定性和模糊性问题中的应用
weixin_30777913
算法目标检测
模糊数学是一种用于处理不确定性和模糊性问题的数学工具,它可以帮助我们更好地处理激光雷达数据中的不确定性和模糊性。激光雷达是一种常用的传感器,用于测量目标物体的距离、速度和方向等信息。然而,在实际应用中,激光雷达所获取的数据往往存在不确定性和模糊性问题,例如由于环境干扰或目标物体的形状复杂性,激光雷达可能无法准确地测量目标物体的位置或速度。通过使用模糊逻辑和模糊集合,我们可以更好地建模和处理激光雷达
- 智能机器人与旋量代数(3)
Metaphysicist.
智能机器人与旋量代数机器人
Chapt2.李群李代数的基本理论2.1群论的基本概念(TheTheoryofGroups)群的概念最初是由19世纪的数学家伽罗瓦提出的,群是抽象代数中的一类结构,,它与研究对称性紧密相关,如代数方程的对称性以及几何图形的对称性(同样的群甚至可以表达几个不同种类物体的对称性)。通常可以认为群是所有对称运算的集合,群论从本质上来讲就是一种描述各种各样的对称性的数学工具。定义2.1群是指可对其元素gg
- AzuB专业介绍:信息学(双元制全学历段)
武汉安拙留学
信息学是研究信息的产生、获取、传输、处理、分类、识别、存储及利用的学科。20世纪60年代以后逐渐形成,它的主要基础理论和科学方法论是神经生理学、心理学、计算机科学、系统工程、信息论、控制论等。它主要研究以下问题:1.客观世界信息源理论,这一理论探讨如何掌握生物、人类和计算机发出和获取信息的规律。2.建立在模糊数学基础上的信息识别理论,在人类社会中,信息是以语言、声音、图象、文字等形式出现的,计算机
- 深度解析基于模糊数学的C均值聚类算法
OverlordDuke
聚类算法算法c语言均值算法聚类算法
深度解析基于模糊数学的C均值聚类算法模糊C均值聚类(FCM)聚类步骤:FCMPython代码:模糊C均值聚类(FCM)在数据挖掘和聚类分析领域,C均值聚类是一种广泛应用的方法。模糊C均值聚类(FCM)是C均值聚类的自然升级版。相对于硬划分的K均值聚类,FCM引入了模糊的隶属度概念,使数据点能够同时隶属于不同聚类中心,更灵活地捕捉数据的复杂结构。聚类步骤:初始化:使用k-means++方法确定初始聚
- 模糊数学在超大规模集成电路设计中的应用
weixin_30777913
算法
模糊数学是一种处理不确定性和模糊性的数学工具,可以应用于超大规模集成电路(VLSI)设计中的不确定性建模和决策问题。在VLSI设计中,存在许多不确定因素,如电路元件的参数变化、环境条件的变化等。这些因素会导致电路的输入和输出具有模糊性。通过模糊数学的方法,可以将这种模糊输入和输出进行建模,以优化电路的鲁棒性和可靠性。例如,可以使用模糊集合来描述输入和输出的模糊性。模糊集合是一种将元素与隶属度函数相
- 【无标题】
数学专业的小白
考研
考研过了一周,是不是该准备研究生复试了?结合自身经历谈谈研究生复试需要注意的事项:注意复试科目和形式每个学校复试科目和形式都大不一样,以数学专业举例,有的学校复试科目较多,如复变函数、实变函数、抽象代数、泛函分析()等;有的学校只需复试一个科目(必选一个科目)。现在估计是线下面试为主了,有的学校要求制作PPT或者简历,这个必须注意,PPT和简历上写的每个内容,都要经得起推敲,问起来必须能够回答出来
- 文本聚类python fcm_机器学习笔记----Fuzzy c-means(FCM)模糊聚类详解及matlab实现
琥珀月芽
文本聚类pythonfcm
前言:这几天一直都在研究模糊聚类。感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类。一:模糊数学我们大家都知道计算机其实只认识两个数字0,1。我们平时写程序其实也是这样if1thendo.永远这种模式,在这种模式中,一个元素要么属于这个集合,要么不属于这个集合,但是对我们现在介绍的模糊集来说,某个元素可能部分属于这个集合,又可能部分属于另外的集合,显然,例如,一个男人(
- 格密码基础:q-ary格
唠嗑!
格密码格密码线性代数格基
目录一.格密码的重要性二.格密码基础2.1格点的另一种理解方式三.q-ary格3.1q-ary垂直格3.2q-ary格3.3二者结合四.论文中的q-ary格4.1定理14.2定理24.3定理3一.格密码的重要性格密码的基础是研究格点上的困难问题,这种格点使用抽象代数的观点则是上的子群。格密码近些年非常火热,主要由于以下几点:抗量子攻击。基于传统数论的公钥密码系统是无法抵抗量子攻击的,这也是格密码最
- 模糊综合评价法——解决评价指标模糊、难以量化的问题
Sup星月★然
数学建模数学建模线性代数数据分析矩阵算法
模糊综合评价法一、概述二、经典集合和模糊集合的基本概念三、隶属函数的三种确定方法一、概述(1)数学中研究的量的划分确定性的量:经典数学(几何、代数)不确定性的量:随机性(概率论、随机过程);灰性(灰色系统);模糊性(模糊数学)(2)什么是模糊性模糊性是与确定性相对的概念。比如生活中的性别、天气、年龄、身高、体重……这些都是确定性概念;而帅、高、白、年轻……则都是模糊性概念(因为没有非常科学的方法来
- 如何保证分布式情况下的幂等性
豆奶快攻
设计模式设计Java分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 线性代数一
刘瞧瞧
线性代数
每日学习刘瞧翘线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。概念线性代数是代数学的一个分
- 【密码学】抽象代数——群(学习笔记)
aching_
密码学学习笔记密码学信息安全抽象代数
群1、运算及关系运算的本质:两个元素经过一定的法则得到一个元素。(加减乘除)运算的规律:交换律、结合律、分配律交换律ab=ba结合律a(bc)=(ab)c分配律a∘(b+c)=a∘b+a∘c关系:非空集合A中对两个元素而言的一种性质,使A中任何两个元素,或有这种性质,或没有这种性质,二者必居其一。例:关系为“>”,A中任意两个元素,或大于,或不大于。(总有属于一种)等价关系:非空集合A中定义了关系
- 抽象代数笔记2——群
rsy56640
数学
CSDN前端有毒,Latex写出来排版全乱……………………………………………………………………………………………….群的定义:设GG是一个非空集合,“oo”是GG上的二元代数运算,称为乘法。如果下列条件成立,则称GG对它的乘法“oo”构成一个群(Group)。1.乘法“oo”满足结合律。2.对乘法“oo”,GG中有一个左幺元ee。即∀a∈G,eoa=a∀a∈G,eoa=a3.对乘法“oo”,GG中
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数据幂等
carl_zhao
在系统设计的时候,操作幂等设计是一点需要考虑的点。幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。用数学表达式来表达的话:f(x)=f(f(x))1、数据库幂等幂等性是后续多余的调用不会对系统数据的一致性进行破坏。在数据库操作一般会有增、删、查、改4类操作。下面我们来看这4
- 抽象代数 04.07 Jordan-Holder定理
longji
抽象代数抽象代数Jordan-Holder定理
http://www.icourses.cn南开大学《抽象代数》§4.7Jordan-Holder定理{\color{blue}{\text{\S4.7Jordan-Holder定理}}}§4.7Jordan-Holder定理可解群存在次正规序列使得因子都是素数阶循环群,且所有因子的阶的乘积为群G的阶。定义4.7.1.称群G的次正规序列{\color{blue}定义4.7.1.}称群G的次正规序列
- 分布式服务的幂等性的个人见解
是王威啊
概念幂等的概念来自于抽象代数,比如对于一元函数来说,满足如下条件:f(f(x))=f(x)即可称为满足幂等性。在计算机科学中,一个操作多次执行和一次执行的影响相同,这样的操作即符合幂等性。在分布式的系统中,服务消费方调用服务提供方的接口,多次调用的结果应该与一次调用的结果相同,这就是分布式环境下的幂等性的语义。为什么都在强调幂等性?因为分布式服务系统有可能因为网络不稳定原因导致一个服务的接口被重复
- 抽象代数简介
景知育德
集合交集·并集·差集在中学阶段就学习过集合,部分内容不再赘述。以下是交集、并集、差集的概念:幂集设是一个集合,那么的所有子集为成员构成的几何成为是幂集,记作。笛卡尔积设是两个集合,定义集合称为与的笛卡尔积,又称卡氏积,集合积。基数集合中元素个数称为集合的基数,记作。如果是无限的,则,称是无限集,否则是有限集。关系集合中的元素相互之间可能有关系(也可能没有关系)。例如全校的学生构成一个集合,某些学生
- 如何保证分布式情况下的幂等性
Elivis Hu
架构师分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 【分布式】: 幂等性和实现方式
无难事者若执
分布式架构中间件1024程序员节分布式java
【分布式】:幂等性和实现方式幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函数就是一个幂等函数,无论多次执
- 基于蚁群算法图像边缘检测的认识
普通研究者
论文学习1024程序员节图像处理
一、边缘检测1.1什么是边缘检测?边缘检测是图像处理中重要的一步,在传统的边缘检测中,都是把边缘定义为颜色急剧变化的区域。边缘检测的目的就是找到图像中亮度变化剧烈的像素点构成的集合,表现出来的往往是轮廓。1.2边缘检测方法微分算子法、最优算子法、拟合法,经典的边缘检测方法.全局提取方法以小波变换、数学形态学、模糊数学,分形理论等以高新技术为基础的图像边缘提取方法。其他的边缘检测方法不做叙述1.21
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR