- 模式搜索+扩散模型:FlowMo重构图像Token化的技术革命
芯作者
DD:日记重构
图像Token化作为现代生成式AI系统的核心技术,长期面临对抗性训练不稳定、潜在空间冗余等挑战。斯坦福大学李飞飞与吴佳俊团队提出的FlowMo(FlowtowardsModes)创新性地融合模式搜索与扩散模型,在多个关键维度突破传统方法局限,为图像压缩与重建开辟新路径。本文将深度解析其技术突破、实现原理及行业影响。一、传统图像Token化的困境与FlowMo的破局之道1.1传统方法的三大桎梏传统T
- 维普AIGC降重方法有哪些?
hjehheje
AIGC
在学术写作和论文创作中,重复率过高是许多人面临的一大难题。随着科技的发展,维普AIGC为我们提供了一系列有效的降重方法。那么,维普AIGC降重方法有哪些呢?接下来就为大家详细介绍。语义理解与改写维普AIGC具备强大的语义理解能力。例如,当我们面对一段论述市场趋势的文字时,它能精准把握核心含义。假设原文是“当前智能手机市场呈现出快速增长的趋势,消费者对高性能手机的需求日益旺盛”,维普AIGC可能会将
- 功率(电功率)的四大计算公式
深圳市青牛科技实业有限公司 小芋圆
芯谷芯麦顶源单片机人工智能新能源嵌入式硬件光伏逆变器
电功率是衡量电能转化为其他形式能量的速率。在电力系统中,功率的计算是基础且关键的内容。以下是电功率的四大计算公式:1.功率公式(直流电)对于直流电(DC),功率(P)可以通过以下公式计算:[P=V\timesI]其中:(P)为功率(瓦特,W)(V)为电压(伏特,V)(I)为电流(安培,A)2.功率公式(交流电)对于纯阻性负载的交流电(AC),功率公式与直流电类似:[P=V\timesI]3.有效功
- 设计模式:创建型、结构型、行为型
0319zz
设计模式
设计模式是一种解决软件设计中常见问题的通用解决方案。根据其目的,设计模式可以分为三大类:创建型模式、结构型模式和行为型模式。创建型模式创建型模式主要用于创建对象,抽象了实例化的过程,使系统独立于对象的创建、组合和表示。创建型模式包括以下几种:工厂方法模式:定义一个创建对象的接口,但由子类决定实例化哪一个类。抽象工厂模式:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。单例模式:
- 基于springboot的在线点餐系统
爱编程的小哥
java毕设springboot后端javavue
全栈在线点餐系统架构解析|SpringBoot+ElementUI后台管理实战(附高并发订单处理方案)一、系统全景透视基于五张效果图分析,该系统是餐饮行业全流程数字化解决方案,采用SpringBoot+MyBatisPlus+Vue2+ElementUI技术栈,实现用户端订餐与商家端管理的双向闭环。通过RBAC权限控制+订单状态机+实时库存预警三大核心机制,支持日均万级订单处理,覆盖从用户选餐、支
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- Redis大key
不7夜宵
redisbootstrap数据库
Redis大key基本概念,影响Redis大key指在Redis中存储了大量数据的键,它会对Redis的性能和内存管理产生影响。大key的定义与value的大小和元素数量有关,但这个定义并不是绝对的,而是相对的,具体取决于系统的使用场景和性能要求。大key通常有以下两种情况:Value存储占用空间大集合类型的Key中元素过多![[Pastedimage20250227151208.png]]造成的
- 多模态大模型常见问题
cv2016_DL
多模态大模型人工智能语言模型自然语言处理机器学习transformer
1.视觉编码器和LLM连接时,使用BLIP2中Q-Former那种复杂的Adaptor好还是LLaVA中简单的MLP好,说说各自的优缺点?Q-Former(BLIP2):优点:Q-Former通过查询机制有效融合了视觉和语言特征,使得模型能够更好地处理视觉-语言任务,尤其是在多模态推理任务中表现优秀。缺点:Q-Former结构较为复杂,计算开销较大。MLP(LLaVA):优点:MLP比较简单,计算
- 华山论剑,大模型(deepseek qwq gemini)辩论人生意义
Lifeng66666666
语言模型语言模型人工智能
借助DeepDiscussion程序,通过让大模型(deepseekqwqgemini)讨论“人生意义是什么”这一挑战问题,我们得以客观观察目前这几种大模型的价值观,能力,不足。部分讨论过程:问题:人生的意义是什么?deepseek/deepseek-r1:free初始方案:针对“人生的意义是什么”这一终极问题,我的解决方案分为以下五个层次,融合东西方哲学智慧与实践心理学,并提供具体行动方向:一、
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习deepseek机器学习算法
大语言模型微调和大语言模型应用的区别?关键要点微调大型语言模型(LLM)是调整预训练模型以适应特定任务或领域的过程,研究表明这能显著提升性能。大型语言模型应用是指将LLM用于实际问题解决或任务执行,如聊天机器人或文本生成。微调和应用的不同在于:微调是准备阶段,应用是最终使用;使用微调模型通常在特定领域表现更好,而预训练模型更适合通用任务。什么是微调大型语言模型?微调大型语言模型是指取一个已经预训练
- 【今日EDA行业分析】2025年3月21日
知梦EDA
EDA行业分析大数据人工智能半导体EDA行业分析
智算时代EDA行业新变局:技术突围与生态重构一、EDA产业格局剧变:技术壁垒与地缘博弈交织在半导体产业链的宏大版图中,EDA工具宛如数字时代的“工业母机”,其重要性伴随芯片复杂度的指数级攀升而愈发显著。据SEMI数据显示,2023年全球EDA市场规模成功突破200亿美元大关,中国本土市场增速更是达到了18%。然而,Synopsys、Cadence、Mentor这三大行业巨头依旧牢牢占据着超过85%
- C语言-排序
<三木>
C/C++杂碎的知识点c语言算法数据结构
C语言-排序冒泡排序选择排序冒泡排序两两比较,大的放后面。每比较一轮,记录交换的次数。当交换的次数为零时,则表示排序完成。chara[10]={9,5,1,2,4,7,6,8,3,0};9大于5交换59124768309大于1交换51924768309大于2交换51294768309大于4交换51249768309大于7交换51247968309大于6交换51247698309大于8交换51247
- GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
蚝油菜花
每日AI项目与应用实例开源人工智能
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->丰富的AI工具库->每日更新->尽在微信公众号->搜一搜:蚝油菜花️“声优连夜转行送外卖!OpenAI新模型每分钟语音成本仅9分钱”大家好,我是蚝油菜花。当同行还在用机械音合成器折磨听众时,这个AI怪物已
- Dify-Plus:企业级AI管理核弹!开源方案吊打SaaS,额度+密钥+鉴权系统全面集成
蚝油菜花
每日AI项目与应用实例人工智能开源开源人工智能
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->丰富的AI工具库->每日更新->尽在微信公众号->搜一搜:蚝油菜花“CTO集体失眠!这个开源项目让企业AI管理进入上帝模式”大家好,我是蚝油菜花。当同行还在为API调用次数和预算超支扯皮时,这个国产神器已
- 如何用 Python 实现树结构
不辉放弃
python开发语言
一、树结构基础认知1.1树的四大特征层级关系:父子节点的从属关系唯一根节点:访问起点无循环:从根到叶的路径不形成环N叉分支:每个节点可有多个子节点1.2核心组件解析classTreeNode:def__init__(self,data):self.data=data#节点存储的数据self.children=[]#子节点容器(多叉树特性)defadd_child(self,node):self.c
- C#入门学习记录(五)轻松掌握条件分支与循环语句
FAREWELL00075
c#学习前端
前言编程就像给计算机写一份"烹饪指南",而条件分支和循环就是这份指南中的关键指令。想象你要教机器人做蛋糕:条件分支:"如果没有鸡蛋了,就去超市买"(做决定)循环:"重复搅拌面糊100次"(重复动作)本文会用简单易懂的语言和比喻,带你掌握C#中这两个核心概念。新手友好,放心食用!一、条件分支:让程序学会"做选择"1.if-else语句(基础版选择器)if(今天下雨){Console.WriteLin
- 中小制造企业必看!MES管理系统破解车间管理四大难题指南
深蓝易网
数字工厂制造人工智能大数据运维devops
在制造业竞争日益激烈的今天,生产车间的低效与混乱已成为制约企业发展的关键瓶颈。计划频繁变更、异常频发、资源浪费等问题不仅导致成本攀升,更直接影响订单交付与客户信任。如何实现生产透明化、管理精细化?MES系统(制造执行系统)凭借其数据驱动与全流程协同能力,正成为企业突破困局的利器。本文将从四大核心痛点切入,深度解析MES管理系统的破局之道。痛点一:计划脱离实际,排产如同“盲人摸象”传统排产模式下,计
- 基于腾讯云大模型知识引擎与DeepSeek的沉浸式历史文化体验系统实践
lijiek
腾讯云microsoft云计算
前言文化遗产数字化保护与传播是当今科技与人文交汇的重要领域。传统的数字化方法往往局限于静态展示,无法实现真正的互动体验。本文将探索一条创新路径:利用腾讯云大模型知识引擎(LKE)与DeepSeek模型构建沉浸式历史文化体验系统,实现与历史人物的"对话"、历史场景的"复原",以及文化知识的智能传播。作为实践案例,我们以中国古代科技成就为切入点,打造了一个可交互的"古代科技馆",让用户能够与张衡、祖冲
- 2025年首个!又一家智驾供应链企业成功上市,踩准感知红利风口
高工智能汽车
人工智能汽车
3月18日,弘景光电在深交所创业板正式挂牌上市,成为了2025年开年首家成功上市的智能汽车供应链企业。弘景光电作为一家专业从事光学镜头及摄像模组产品的研发、设计、生产和销售的高新技术企业,已深耕行业十多年,目前其产品应用领域主要包括智能汽车汽车及新兴消费两大领域,其中车载光学镜头产品主要应用于智能座舱和智能驾驶系统。在过去的几年中,弘景光电抓住车载光学镜头和新兴消费电子市场的巨大增长机会,业绩实现
- 使用DeepSeek R1大模型编写迅投 QMT 的量化交易 Python 代码
wtsolutions
qmt量化交易pythonqmtdeepseek量化交易代码生成
随着人工智能技术的迅猛发展,利用AI工具提升工作效率已成为现代开发者的重要手段。在使用deepseek官方网页生成迅投QMT代码的时候,deepseek给出的代码是xtquant代码,也就是miniqmt代码,并不是我们传统意义上说的大QMT可用的代码。因此,我们需要自建一个知识库,让deepseek根据我的知识库里面的知识,去帮我生成大QMT可用的交易代码。一、建立迅投QMT的知识库建立迅投QM
- Deepseek API 调用
哦豁灬
LLM深度学习生产工具deepseekLLMAPI大模型
1获取APIKey目前比较知名的提供了DeepSeek的推理服务商包括硅基流动、阿里云、腾讯云等等。这些推理服务商一般是提供API接口,需要安装大模型客户端并配置API。获取API密钥,以硅基流动为例:前往硅基流动官方网站(https://cloud.siliconflow.cn)注册账号。在账户管理的API密钥中点击新建API密钥并复制。安装一个本地的第三方大模型客户并配置,常见的包括Chatb
- vLLM 部署大模型
哦豁灬
深度学习LLM人工智能vLLM大模型部署LLM
1介绍vLLM是来自UCBerkeley的LMSYS在LLM推理方面的最新工作(没错就是搞出Vicuna的那个group),最大亮点是采用PagedAttention技术,结合ContinuousBatching,极大地优化了realtime场景下的LLMserving的throughput与内存使用。vllmgithub仓库1.1安装安装命令:pip3installvllm#vllm==0.2.
- springboot 项目如何提高并发量
LCY133
spring后端springbootjava后端
提升基于SpringBoot的Web项目并发量需要从应用优化、数据库调优、缓存策略、异步处理、水平扩展等多方面综合改进。以下是具体方案和实践建议:一、应用层优化1.代码性能优化•避免阻塞操作:减少同步锁、长事务、大文件处理等耗时操作。•优化SQL查询:避免N+1查询,使用索引,减少全表扫描。•复用对象:避免频繁创建大对象(如JSON解析工具),使用线程安全对象池。2.线程池配置•调整Web服务器线
- docker学习整理
24k小善
java大数据云计算
一、Docker核心原理:像租房装修一样理解容器1.1容器vs虚拟机:合租vs买别墅虚拟机就像买别墅:每个别墅(虚拟机)自带独立地基(操作系统)、水电系统(系统资源),启动慢(分钟级)、资源占用大(GB级)[1][10]容器就像合租:大家共享小区基础设施(宿主机内核),但每个房间(容器)有自己的家具摆放(应用和依赖)。轻量(MB级)、秒级启动,还能随时搬走(迁移)[9]1.2镜像分层:乐高积木式打
- 使用 Argilla 进行大语言模型数据管理与监控
qahaj
语言模型python人工智能
技术背景介绍Argilla是一个开源的数据管理平台,专为大语言模型(LLMs)设计。它旨在通过快速的数据管理以及结合人类和机器的反馈,帮助开发者构建更强大的语言模型。同时,Argilla支持整个MLOps周期的每个步骤,从数据标注到模型监控。核心原理解析Argilla的核心优势在于其灵活的数据管理流程和强大的反馈机制。通过Argilla,开发者可以实时监控模型性能,并根据需要调整数据标注策略。这种
- java毕业设计,网上商城系统
爱编程的小哥
java毕设java课程设计springbootvue
️OnlineMall商城系统全解析|Vue3+SpringBoot全栈实战(附高并发与数据安全方案)一、系统架构全景基于七张效果图分析,该系统是企业级电商综合管理平台,采用SpringBoot3+Vue3+ElementPlus+MyBatisPlus技术栈,覆盖商品管理、订单处理、会员运营等核心场景。通过RBAC权限控制+Elasticsearch搜索+分布式事务三大技术亮点,支持10万级商品
- LLM:软件测试的颠覆性力量
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM:软件测试的颠覆性力量关键词:大语言模型(LLM)、软件测试、人工智能、测试自动化、测试效率、质量保证、测试革新1.背景介绍在当今快速发展的软件行业中,测试一直是确保产品质量的关键环节。随着人工智能技术的飞速进步,特别是大语言模型(LargeLanguageModels,简称LLM)的出现,软件测试领域正经历着前所未有的变革。LLM凭借其强大的自然语言处理能力和广泛的知识储备,正在重塑我们对
- 卷积神经网络Batch Normalization的作用
arron8899
cnnbatch人工智能
BatchNormalization的作用(通俗版)1.像“稳定器”一样校准每层输入想象你在烤多层蛋糕,每层蛋糕的烘烤温度不同(相当于神经网络的每一层数据分布不同)。没有BN时,烤箱温度忽高忽低,导致有的层烤焦(梯度爆炸),有的层不熟(梯度消失)。BN的作用相当于给每一层装了一个自动温度调节器,实时将输入数据调整到标准温度(均值为0,方差为1),保证每层都能均匀受热,训练更稳定。2.让模型训练“少
- DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略
一个处女座的程序猿
资深文章(前沿/经验/创新)DataScienceML数据科学数据科学的生命周期机器学习
DS/ML:数据科学技术之数据科学生命周期(四大层次+机器学习六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略导读:本文章是博主在数据科学和机器学习领域,先后实战过几百个应用案例之后的精心总结,应该是完全覆盖了数据科学的整个生命周期及其各个阶段的要点。其中机器学习领域六大阶段更是在整个数据科学生命周期中扮演着极其重要的角色。同时,因为涉及到博主出书中出版社要求在
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在