- 数据结构&算法-力扣-01数组和字符串python
亓官贝
数据结构算法pythonleetcode
数据结构&算法-数组和字符串练习先占一个标题刷题链接:数组和字符串1.寻找数组的中心索引2.搜索插入位置3.合并区间python解法4.旋转矩阵python解法5.零矩阵python常用方法(见菜鸟教程)1.enumerateli=[a,b,c,d]list(enumerate(li))[(0,a),(1,b),(2,c),3,d]list(enumerate(li,start=1))2.zip
- 自然语言处理-词嵌入 (Word Embeddings)
纠结哥_Shrek
自然语言处理人工智能
词嵌入(WordEmbedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有相近的表示。常见词嵌入方法基于矩阵分解的方法LatentSemanticAnalysis(LSA)LatentDirichletAllocation(LDA)非负矩阵分解(NMF)基于神经网络的方法Word2Vec(Google提
- 矩阵论复习
随机ID
线性代数矩阵
第1讲线性空间与线性算子1.1线性空间数环设ZZZ为非空数集且其中任何两个相同或者相异的数之和、差与积仍属于ZZZ(即数集关于加、减、乘法运算封闭),则称ZZZ是一个数环。根据数环的定义有:任何数环ZZZ必含有0。因为若a∈Za\inZa∈Z,则a−a=0∈Za-a=0\inZa−a=0∈Z;若a∈Za\inZa∈Z,则−a∈Z-a\inZ−a∈Z,因为0−a=−a∈Z0-a=-a\inZ0−a=
- matlab的多线程操作
m0_74823044
面试学习路线阿里巴巴资料职业发展matlab单片机开发语言后端
matlab的多线程操作先导知识一、结论二、定时器timer三、多进程操作先导知识听说过:定时器中断、线程、进程知道:matlab的帮助文档使用方式,如:docmemmapfile、helpmemmapfile理解:回调函数,同步回调、异步回调(不知道也没关系,csdn里面很多人都写了这个)一、结论截止到2021a版本,matlab不能实现传统意义的多线程,但是可以实现并行计算(docparall
- 开关电源matlab仿真,用数学方法建立一种开关电源全系统的仿真模型
照月鱼yoyi
开关电源matlab仿真
引言通过数学的方法,把小功率开关电源系统表示成数学模型和非线性控制模型,建立一种开关电源全系统的仿真模型,提高了仿真速度。Matlab是一个高级的数学分析软件,Simulink是运行在Matlab环境下,用于建模、仿真和分析动态系统的软件包,它支持连续、离散及两者混合的线性及非线性系统。在Matlab5.2中推出了电力系统工具箱,该工具箱可以与Simulink配合使用,能够更方便地对电力电子系统进
- 基于麻雀搜索算法SSA求解最优目标
pytorchCode
人工智能python算法Matlab
基于麻雀搜索算法SSA求解最优目标麻雀搜索算法(SparrowSearchAlgorithm,SSA)是一种启发式优化算法,灵感来自于麻雀的群体行为。该算法模拟了麻雀在寻找食物时的搜索过程,通过合作和竞争来找到最佳解决方案。在本文中,我们将介绍如何使用SSA算法来求解最优目标,并提供相应的MATLAB源代码。首先,我们需要定义问题的目标函数。假设我们要求解的目标是最小化一个连续的优化问题。那么,我
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- 手把手教你学 MATLAB(2.5):编写和调用函数,创建和运行脚本文件
xiaoheshang_123
手把手教你学MATLAB专栏matlab开发语言
目录手把手教你学MATLAB:编写和调用函数,创建和运行脚本文件1.编写和调用函数1.1定义函数1.1.1示例:定义一个简单的函数1.2保存函数1.2.1创建addNumbers.m文件1.3调用函数1.3.1示例:调用addNumbers函数2.创建和运行脚本文件2.1创建脚本文件2.1.1示例:创建一个简单的脚本文件2.2运行脚本文件2.2.1在命令窗口中运行脚本文件2.2.2在脚本编辑器中运
- 【C/C++】开关灯游戏 蓝桥杯/ACM备考
奇变偶不变0727
c语言c++游戏
本题考点预览:【算法:模拟】状态压缩与枚举利用整数的二进制表示对灯的点击状态进行压缩和枚举。矩阵操作与模拟按下按钮后,矩阵中对应灯的状态发生变化,涉及邻接元素的修改。递归思想简化操作每一行的灯状态由上一行的按钮点击状态决定。边界条件处理特别注意矩阵边界灯的翻转,不越界。拷贝与回溯使用memcpy保持初始状态不变,便于尝试不同方案。题目描述5行6列按钮组成的矩阵,每个按钮下面有一盏灯。当按下一个按钮
- Python入门教程丨3.2 再见Excel!用Python这5个模块,我把3天工作压缩到3分钟
凌小添
Python教程pythonexcel开发语言
⭐还在用Excel手动算均值方差?还在为海量数据统计熬夜加班?用Python这5把「数据手术刀」写一次代码,就能直接复用,专业报告自动生成!本期内容:模块核心功能应用场景math数学计算几何、物理模拟random生成随机数据游戏、抽样测试statistics统计分析回归分析、市场调研numpy数组与矩阵运算图像处理、机器学习pandas表格数据处理与分析金融分析、数据清洗一、基础数学库1.1mat
- 华为OD机试算法目录题库-1
国王护卫队
华为OD面试最新手撕代码华为od算法python
(D卷,200分)-攀登者2(Java&JS&Python&C)(D卷,100分)-最大时间(Java&JS&Python)(D卷,200分)-最长子字符串的长度(二)(Java&JS&Python&C)(D卷,200分)-最小矩阵宽度(Java&JS&Python&C)(D卷,200分)-最小传输时延Ⅱ(Java&JS&Python)(D卷,200分)-最大社交距离(Java&JS&Python
- 方波的傅里叶变换及方波的MATLAB实现
xrgs_shz
matlab开发语言
一、傅里叶变换简介傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。傅里叶变换是一种线性的积分变换。它的理论依据是:任何连续周期信号都可以由一组适当的正弦曲线组合而成,即使用简单的正弦、余弦函数,可以拟合复杂函数。为什么要进行傅里叶变换?傅里叶变换是一种数学工具,能够将时域信号转换为频域信号。具体来说,傅里叶变换将时域波形信号转换为离散的频
- [特殊字符]【计算机视觉必杀技】三行代码实现文档智能校正(附完整代码)
我的青春不太冷
计算机视觉人工智能科技学习Pythonopencv
文章目录基于四点透视变换的文档图像校正技术1.实现效果2.技术原理2.1透视变换数学模型2.2算法流程3.核心代码解析3.1.1坐标点排序3.1.2透视变换矩阵4.实验结果分析4.1中间过程可视化4.2性能指标5.应用场景5.1纸质文档电子化5.2车牌识别预处理5.3AR场景平面检测5.4工业视觉中的平面定位6.总实现代码7.结论基于四点透视变换的文档图像校正技术在计算机视觉领域,图像几何变换是实
- 多元随机分布的协方差矩阵的计算(python示例)
读思辨
Python数学矩阵python线性代数
协方差矩阵是统计学中描述两个或多个随机变量之间线性相关程度的一个重要工具。对于一个kkk维随机向量X=(X1,X2,...,Xk)X=(X_1,X_2,...,X_k)X=(X1,X2,...,Xk),其协方差矩阵是一个k×kk\timeskk×k的矩阵,其中每个元素σij\sigma_{ij}σij是随机变量XiX_iXi和XjX_jXj的协方差。协方差的计算公式为:σij=Cov(Xi,Xj)
- DeepSeek优势方法策略
ZhangJiQun&MXP
2021论文2021AIpython教学人工智能语言模型自然语言处理gpt深度学习
DeepSeek优势方法策略目录DeepSeek优势方法策略DeepSeek在训练阶段压缩时间空间复杂度的方法DeepSeek和ChatGPT在压缩时间空间复杂度上的不同之处DeepSeek能降低显卡使用的原因DeepSeek在训练阶段压缩时间空间复杂度的方法采用MLA架构:在传统的Transformer模型中,每一层都需要独立计算和存储key和value矩阵,占用大量内存空间。MLA通过动态合并
- leetcode刷题记录(六十四)——240. 搜索二维矩阵 II
曲奇是块小饼干_
leetcode刷题记录leetcode矩阵算法java
(一)问题描述240.搜索二维矩阵II-力扣(LeetCode)240.搜索二维矩阵II-编写一个高效的算法来搜索mxn矩阵matrix中的一个目标值target。该矩阵具有以下特性:*每行的元素从左到右升序排列。*每列的元素从上到下升序排列。示例1:[https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2020/11/25/search
- leetcode刷题(68)——74. 搜索二维矩阵
TheManba
leetcode刷题二分法leetcode
一、题目编写一个高效的算法来判断mxn矩阵中,是否存在一个目标值。该矩阵具有如下特性:每行中的整数从左到右按升序排列。每行的第一个整数大于前一行的最后一个整数。示例1:输入:matrix=[[1,3,5,7],[10,11,16,20],[23,30,34,50]]target=3输出:true示例2:输入:matrix=[[1,3,5,7],[10,11,16,20],[23,30,34,50]
- leetcode刷题(119)——54.螺旋矩阵
进击的代码家
leetcode
给你一个m行n列的矩阵matrix,请按照顺时针螺旋顺序,返回矩阵中的所有元素。示例1:输入:matrix=[[1,2,3],[4,5,6],[7,8,9]]输出:[1,2,3,6,9,8,7,4,5]示例2:输入:matrix=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]输出:[1,2,3,4,8,12,11,10,9,5,6,7]按照顺时针的顺序访问二维数组,通过whi
- H266/VVC 量化编码中量化矩阵 QM 技术
码流怪侠
视频编解码VVCH266量化矩阵QM量化编码VVenC音视频
量化矩阵QM量化矩阵(QuantizationMatrixes,QM)的原理是对于不同位置的变换系数使用不同的量化步长进行量化,人眼对高频不敏感对低频敏感,对低频分量进行小步长量化,对高频分量进行大步长量化,在保证主观质量的情况下,提高压缩效率。量化矩阵作用于比例缩放过程(比例缩放过程在变换和量化之间),其大小和TU相同。VVC支持默认量化矩阵和自定义量化矩阵。如下图,变换后的DCT(或DST)系
- 2025年美赛数学建模2025 MCM Problem A: Testing Time: The Constant Wear On Stairs A题 测试时间:楼梯上的持续磨损 代码解析
2025年数学建模美赛
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025数学建模美赛A题2025楼梯上的持续磨损matlab代码
目录Python1.数据预处理与特征工程数据标准化与特征构建2.行进方向偏好分析深度神经网络(DNN)用于方向性分析3.多人同时使用分析卷积神经网络(CNN)用于磨损模式识别4.时间序列分析LSTM模型用于时间序列预测matlab代码Python我们将采用更多的机器学习和深度学习技术,例如图像处理、深度神经网络(DNN)、卷积神经网络(CNN)等,并结合不同的算法进行更深入的分析。1.数据预处理与
- 2025年美赛数学建模 MCM 问题A:测试时间:楼梯上的持续磨损 详细解析和代码(持续更新中,matlab和python代码,2025美赛)
2025年数学建模美赛
2025年美赛MCM/ICM数学建模matlab2025年数学建模美赛2025美赛python2025测试时间:楼梯上的持续磨损
目录1.楼梯的使用频率分析问题描述:建模思路:方法:实现步骤:2.方向偏好分析问题描述:建模思路:方法:实现步骤:3.同时使用人数分析问题描述:建模思路:方法:实现步骤:4.楼梯的年龄推算问题描述:建模思路:方法:实现步骤:python代码matlab代码1.楼梯的使用频率分析问题描述:我们需要分析楼梯的使用频率,特别是通过楼梯的磨损来推断使用频率。磨损程度通常与使用频率成正比,磨损严重的地方表示
- Photosop的基础知识(九)--使用路径
a18007931080
photoshop
一、路径的功能和特点图像有两种基本的构成方式:一种是矢量图像;另一种是位图图像。对于矢量图像来说,路径和点是它的二要素。路径指矢量对象的线条,点则是确定路径的基准。在矢量图像的绘制中,图像中每个点和点之间的路径都是通过计算自动生成的。在矢量图像中记录的是图像中每个位置的坐标以及这些坐标间的相互关系。及矢量图像不同,位图图像中记录的是像素的信息,整个位图图像是由像素矩阵构成的。位图图像不用记录烦琐复
- 基于Matlab的秃鹰算法求解最优目标问题
代码编织匠人
算法matlab开发语言Matlab
基于Matlab的秃鹰算法求解最优目标问题秃鹰算法是一种基于仿生学原理的优化算法,灵感来源于秃鹰在捕食过程中的搜索策略。该算法通过模拟秃鹰的捕食行为,寻找最优解决方案。在本文中,我们将使用Matlab实现秃鹰算法,并利用该算法解决一个最优目标问题。首先,让我们定义要解决的最优目标问题。假设我们有一个函数f(x),其中x是一个向量,表示优化问题的变量。我们的目标是找到使函数f(x)取得最小值的x值。
- TensorFlow 简介
九月十九
tensorflow人工智能python
TensorFlow是一个开源的机器学习框架,由Google开发。它提供了一个强大的工具集,用于构建和训练各种机器学习模型。TensorFlow的基本概念和使用场景包括:1.张量(Tensor):TensorFlow中的核心数据结构是张量,它是一个多维数组,可以表示标量、向量、矩阵等。2.计算图(Graph):TensorFlow使用计算图来表示机器学习模型的计算过程。计算图由一系列的操作节点和数
- matlab——计算VPD(vapor pressure defict)
小琳子要开心呀
MATLABVPD计算饱和水汽压Goff-Gratch公式matlab
需求:计算VPD(vaporpressuredefict)。介绍:饱和水汽压差(简称VPD)是指在一定温度下,饱和水汽压与空气中的实际水汽压之间的差值(百度百科)。因此,温室中VPD的理想范围是0.45kPa至1.25kPa,理想情况下约为0.85kPa。通常,大多数植物在VPD在0.8到0.95kPa之间时生长良好(维基百科)。计算方法:一、先计算饱和水汽压二、饱和水汽压减去实际水汽压。世界气象
- 【线性代数】如何判断矩阵是否可以相似对角化
x66ccff
数学线性代数矩阵机器学习
步骤第一步,看是不是实对称矩阵,如果是实对称矩阵,立即推可相似对角化,如果不是实对称矩阵,看第二步;第二步,求方阵的n个特征值,如果特征值彼此都不相同,也就是都是单根的话,立即推可相似对角化,如果有重根,看第三步;第三步,来验证k重根是不是具备k个线性无关的特征向量,也就是看A-λE或λE-A的秩是否等于n-k,若相等,立即推可相似对角化,不相等,则不能进行相似对角化原理:(1)实对称矩阵->不同
- Day29(补)-【AI思考】-精准突围策略——从“时间贫困“到“效率自由“的逆袭方案
一个一定要撑住的学习者
#AI深度思考学习方法人工智能unity游戏引擎
文章目录精准突围策略——从"时间贫困"到"效率自由"的逆袭方案**第一步:目标熵减工程(建立四维坐标)**与其他学习方法的结合**第二步:清华方法本土化移植**与其他工具对比**~~第三步:游戏化改造方案~~****第四步:环境重塑工程****第五步:技术杠杆矩阵****第六步:风险对冲策略**可行性验证模型甘特图OKR看板精准突围策略——从"时间贫困"到"效率自由"的逆袭方案让思想碎片重焕生机的
- 单片机:独立按键与矩阵按键的
巴罢2
c语言51单片机
前言:前面是单片机IO口的输出使用,(比如:IO口控制电平高低来显示LED灯和数码管蜂鸣器等。)本次开始使用IO口的输入。1.52单片机板载4个黑色的独立按键,其独立应当是因为各自用一个I/O口进行控制。ps:按键与IO口之间的对应关系是不同于以往的顺序升序是对应关系。K1->p3.1k2->p3.0//两个口子的位置是相反的。k3->p3.2k4->p3.4流程:1)检测是否有按键按下2)延时消
- 【Proteus仿真】【51单片机】多功能计算器系统设计
qq_215138327
proteus51单片机嵌入式硬件
目录一、主要功能二、使用步骤三、硬件资源四、软件设计五、实验现象联系作者一、主要功能1、LCD1602液晶显示2、矩阵按键3、加减乘除,开方运算4、带符号运算5、最大999*999二、使用步骤基于51单片机多功能计算器包含:程序,仿真,文档等三、硬件资源1、51单片机核心模块2、按键模块3、LCD1602显示模块四、软件设计#include#include#include#include#incl
- directx12 3d游戏开发 了解函数名和类名规律,提高开发效率
云缘若仙
directx123d算法
类常用:形式为XM+“✳✳✳✳✳✳”XMVECTOR:XM+VECTOR向量类XMMATRIX:XMMATRIX矩阵类前加F:FXMVECTORF+XM+VECTOR前3个XMVECTOR参数前加C:CXMVECTORC+XM+VECTOR其余的XMVECTOR参数其他类定义在:DirectXMath库结构函数常用:形式为XM+“✳✳✳✳✳✳”+“✳✳✳✳✳✳”+“✳✳✳✳✳✳”XMVectorA
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla