matlab GPU 操作

从Matlab2013版本开始,matlab将可以直接调用gpu进行并行计算,而不再需要安装GPUmat库。这一改动的好处是原有的matlab内置函数都可以直接运用,只要数据格式是gpuArray格式的,那么计算过程会自动的调用GPU进行计算,不可谓不方便。

具体操作起来,只要知道下面几个函数就可以像编写简单的m文件一样,进行matlab的GPU编程:
1.GPU设备确认函数
1)n=gpuDeviceCount   %返回设备上的GPU数目
2) gpuDevice          %选择GPU设备
    D=gpuDevice or gpuDevice(): 如果当前还未设置选择的GPU,则选择默认的GPU,D是返回对象;如果已经设    置了GPU,则返回设置的GPU对象。
    D=gpuDevice(IDX): 表示选择IDX对应的GPU设置,D是返回对象
    %PS: 目前的GPU设置一般至少包含两个GPU,分别用1和2表示对应的IDX。
3) reset(gpudev)  %清空gpu的内存,类似matlab的clear的功能。其中gpudev是gpuDevice所返回的对象。
 
2.GPU以CPU之间的交互
1) gpuArray(CPU-->GPU)
    主要有两个功能:
    I) 将CPU内存数据传导到GPU内存中
    例子-1:
    X=rand(10,'single'); %定义在CPU上的一个10x10的随机初始化数组
    GX=gpuArray(X);      %在GPU开始数组GX,并且将X的值赋给GX
    GX2=GX.*GX;         %GPU上执行数组对应位置的点乘
    II)在GPU内存中随机初始化一些内存数据。
    例子-2:
    GX=rand(10,'gpuArray'); %直接在GPU设备上随机初始化一个10x10的数组
    %%PS:常用的随机初始化函数有:eye, ones, zeros, rand, randi, randn.
2) gather(GPU-->CPU)
    主要是将GPU内存中的数据拷贝回CPU内存中。
    继续例子-1
    X2=gather(GX2)       %将GPU内存中的数组GX2赋值给CPU中的X2
3) TF=existOnGPU(DATA)
    用于判断DATA是否存在于GPU内存中。如果不存在则返回false。
 
3.计算效率统计
   t=gputimeit(F,N)     %返回执行F操作N次所需的时间,当N=1时可以缺省   

你可能感兴趣的:(matlab)