最小生成树的性质
MST性质:设G = (V,E)是连通带权图,U是V的真子集。如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中,
(u,v)的权c[u][v]最小,那么一定存在G的一棵最小生成树,(u,v)为其中一条边。
构造最小生成树,要解决以下两个问题:
(1).尽可能选取权值小的边,但不能构成回路(也就是环)。
(2).选取n-1条恰当的边以连接网的n个顶点。
设G = (V,E)是连通带权图,V = {1,2,…,n}。先任选一点(一般选第一个点),首先置S = {1},然后,只要S是V的真子集,就选取满足条件i ∈S,j ∈V-S,且c[i][j]最小的边,将顶点j添加到S中。这个过程一直进行到S = V时为止。在这个过程中选取到的所有边恰好构成G的一棵最小生成树。
以 hdu 1863为例 (点击打开链接)
#include<stdio.h> #include<limits.h> #include<string.h> #define N 100 int n,m,map[N+5][N+5],v[N+5],low[N+5]; int prim() { int i,j,pos,min,s=0; memset(v,0,sizeof(v)); //v[i]用来标记i是否已访问,先初始化为0,表示都未访问 v[1]=1; //先任选一点作为第一个点 pos=1; //pos用来标记当前选的点的下标 for(i=2;i<=n;i++) low[i]=map[1][i]; //用low数组存已选点到其他点的权值 for(i=1;i<n;i++){ min=INT_MAX; for(j=1;j<=n;j++) //求权值最小的边 if(!v[j]&&low[j]<min){ min=low[j]; pos=j; } if(min==INT_MAX) break; s+=min; v[pos]=1; for(j=1;j<=n;j++) //更新low数组 if(!v[j]&&map[pos][j]<low[j]) low[j]=map[pos][j]; } if(i!=n) s=-1; return s; } int main() { int i,j,s,a,b,c; while(scanf("%d%d",&m,&n)!=EOF){ //m为道路数,n为村庄数 if(m==0) break; for(i=1;i<=n;i++) for(j=1;j<=n;j++) map[i][j]=INT_MAX; //先将map数组初始化为很大的值(int 最大值) for(i=1;i<=m;i++){ scanf("%d%d%d",&a,&b,&c); map[a][b]=map[b][a]=c; //map[a][b]存的从a到b的权值 } s=prim(); if(s==-1) printf("?\n"); else printf("%d\n",s); } return 0; }
以 hdu 1863为例 (点击打开链接)
1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 int f[105],n,m; 5 struct stu 6 { 7 int a,b,c; 8 }t[5500]; 9 int cmp(struct stu x,struct stu y) 10 { 11 return x.c<y.c; 12 } 13 int find(int x) //路径压缩,找父节点 14 { 15 if(x!=f[x]) 16 f[x]=find(f[x]); 17 return f[x]; 18 } 19 int krus() 20 { 21 int i,k=0,s=0,x,y; 22 for(i=1;i<=n;i++){ 23 x=find(t[i].a); 24 y=find(t[i].b); 25 if(x!=y){ //最小生成树不能形成环,所以要判断它们的是否属于同一集合 26 s+=t[i].c; 27 k++; 28 if(k==m-1) //<span style="font-family: KaiTi_GB2312;">最小生成树会形成m-1(顶点-1)条边,若已形成,则最小生成树已构成</span> 29 break; 30 f[x]=y; //将父节点更新 31 } 32 } 33 if(k!=m-1) 34 s=-1; 35 return s; 36 } 37 int main() 38 { 39 int i,s; 40 while(scanf("%d%d",&n,&m)!=EOF){ 41 if(n==0) 42 break; 43 for(i=1;i<=n;i++) 44 scanf("%d%d%d",&t[i].a,&t[i].b,&t[i].c); 45 for(i=1;i<=m;i++) //f[i]存的结点i的父亲,先将其父亲都初始化为其本身 46 f[i]=i; 47 sort(t+1,t+1+n,cmp); //按权值从小到大排序 48 s=krus(); 49 if(s==-1) 50 printf("?\n"); 51 else 52 printf("%d\n",s); 53 } 54 return 0; 55 }
注:若顶点数为n,边为e
prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边的数目无关,
而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。