HDU 1166 敌兵布阵(线段树,单点更新 || 树状数组)

A - 敌兵布阵
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
Submit  Status

Description

C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。 
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的. 
 

Input

第一行一个整数T,表示有T组数据。 
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。 
接下来每行有一条命令,命令有4种形式: 
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30) 
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30); 
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数; 
(4)End 表示结束,这条命令在每组数据最后出现; 
每组数据最多有40000条命令 
 

Output

对第i组数据,首先输出“Case i:”和回车, 
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。 
 

Sample Input

1 10 1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
 

Sample Output

Case 1:
6
33
59
 
 
线段树的入门题,从这题可以掌握怎么去创建线段树,更新线段树和查询线段树
 1 #include<cstdio>

 2 #include<cstring>

 3 #include<string>

 4 #include<stdlib.h>

 5 #include<iostream>

 6 #include<algorithm>

 7 using namespace std;

 8 struct node                             //节点结构体

 9 {

10     int l,r;

11     int num;

12 }a[250000];

13 int ans;

14 void contree(int l,int r,int now)       //创建线段树

15 {

16     a[now].l=l;

17     a[now].r=r;

18     if(l==r)                            //如果l==r,说明没有子节点了,那么此时为单个营地,输入人数

19     {

20         scanf("%d",&a[now].num);

21         return ;

22     }

23     int mid=(a[now].l+a[now].r)/2;      

24     contree(l,mid,now<<1);              //递归左子树

25     contree(mid+1,r,now<<1|1);          //递归右子树

26     a[now].num=a[now<<1].num+a[now<<1|1].num;

27 }                                        

28 void addtree(int l,int r,int now,int vis,int val)   //更新线段树

29 {

30     if(l==r&&l==vis)

31     {

32         a[now].num+=val;

33         return ;

34     }

35     int mid=(a[now].l+a[now].r)/2;

36     if(vis>mid)

37         addtree(mid+1,r,now<<1|1,vis,val);

38     if(vis<=mid)

39         addtree(l,mid,now<<1,vis,val);

40     a[now].num=a[now<<1].num+a[now<<1|1].num;        //每次更改某个值的时候,被查找过的数的值也要更新,这点很重要

41 }

42 void sumtree(int l,int r,int now,int L,int R)        //查询线段树

43 {

44     if(L<=l&&r<=R)

45     {

46         ans+=a[now].num;

47         return ;

48     }

49     int mid=(a[now].l+a[now].r)/2;

50     if(L>mid)

51         sumtree(mid+1,r,now<<1|1,L,R);

52     else if(R<=mid)

53         sumtree(l,mid,now<<1,L,R);

54     else

55     {

56         sumtree(l,mid,now<<1,L,R);

57         sumtree(mid+1,r,now<<1|1,L,R);

58     }

59 }

60 int main()

61 {

62     int kase,n,cnt=0;

63     scanf("%d",&kase);

64     while(kase--)

65     {

66         scanf("%d",&n);

67         contree(1,n,1);

68         printf("Case %d:\n",++cnt);

69         while(1)

70         {

71             getchar();

72             string str;

73             cin>>str;

74             int x,y;

75             ans=0;

76             if(str=="End")

77                 break;

78             scanf("%d %d",&x,&y);

79             if(str=="Query")

80             {

81                 sumtree(1,n,1,x,y);

82                 printf("%d\n",ans);

83             }

84             else if(str=="Add")

85                 addtree(1,n,1,x,y);

86             else

87                 addtree(1,n,1,x,-y);

88         }

89     }

90     return 0;

91 }
View Code

 代码风格稍微小改

 1 #include<cstdio>

 2 #include<cstring>

 3 #include<stdlib.h>

 4 #include<algorithm>

 5 using namespace std;

 6 const int MAXN=50000+10;

 7 struct node

 8 {

 9     int l,r;

10     int num;

11     int mid()

12     {

13         return (l+r)/2;

14     }

15 }a[MAXN*5];

16 void btree(int l,int r,int step)

17 {

18     a[step].l=l;

19     a[step].r=r;

20     if(l==r)

21     {

22         scanf("%d",&a[step].num);

23         return ;

24     }

25     int mid=a[step].mid();

26     btree(l,mid,step*2);

27     btree(mid+1,r,step*2+1);

28     a[step].num=a[step*2].num+a[step*2+1].num;

29 }

30 void ptree(int vis,int val,int step)

31 {

32     if(a[step].l==a[step].r&&a[step].l==vis)

33     {

34         a[step].num+=val;

35         return ;

36     }

37     int mid=a[step].mid();

38     if(vis>mid)

39         ptree(vis,val,step*2+1);

40     else

41         ptree(vis,val,step*2);

42     a[step].num=a[step*2].num+a[step*2+1].num;

43 }

44 int fintree(int x,int y,int step)

45 {

46     if(x<=a[step].l&&a[step].r<=y)

47         return a[step].num;

48     int mid=a[step].mid();

49     if(x>mid)

50         return fintree(x,y,step*2+1);

51     else if(y<=mid)

52         return fintree(x,y,step*2);

53     else

54         return fintree(x,y,step*2)+fintree(x,y,step*2+1);

55 }

56 int main()

57 {

58     int T,cnt=0;

59     char str[30];

60     scanf("%d",&T);

61     while(T--)

62     {

63         int n;

64         scanf("%d",&n);

65         btree(1,n,1);

66         printf("Case %d:\n",++cnt);

67         while(scanf("%s",str)!=EOF)

68         {

69             if(str[0]=='E')

70                 break;

71             int x,y,ans;

72             scanf("%d %d",&x,&y);

73             if(str[0]=='A')

74                 ptree(x,y,1);

75             if(str[0]=='S')

76                 ptree(x,-y,1);

77             if(str[0]=='Q')

78             {

79                 ans=fintree(x,y,1);

80                 printf("%d\n",ans);

81             }

82         }

83     }

84     return 0;

85 }
View Code

 树状数组的写法

#include<cstdio>

#include<iostream>

#include<cstring>

#include<cmath>

#include<stdlib.h>

#include<algorithm>

using namespace std;

const int MAXN=50000+10;

int a[MAXN],T,n;

char str[10];

int lowbit(int x)

{

    return x&-x;

}

int Query(int x)

{

    int sum=0;

    while(x>0)

    {

        sum+=a[x];

        x-=lowbit(x);

    }

    return sum;

}

void Add(int x,int val)

{

    while(x<=n)

    {

        a[x]+=val;

        x+=lowbit(x);

    }

}

int main()

{

    int cnt=0,val;

    scanf("%d",&T);

    while(T--)

    {

        memset(a,0,sizeof(a));

        scanf("%d",&n);

        for(int i=1;i<=n;i++)

        {

            scanf("%d",&val);

            Add(i,val);

        }



        printf("Case %d:\n",++cnt);

        while(scanf("%s",str))

        {

            int numa,numb;

            if(str[0]=='E') break;

            scanf("%d %d",&numa,&numb);

            if(str[0]=='A')

                Add(numa,numb);

            else if(str[0]=='S')

                Add(numa,-numb);

            else

                printf("%d\n",Query(numb)-Query(numa-1));

        }

    }

    return 0;

}
View Code

 

你可能感兴趣的:(树状数组)