一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。
AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,例如以下图所看到的:
如上所看到的,共同拥有11项活动(11条边),9个事件(9个顶点)。整个project仅仅有一个開始点和一个完毕点。即仅仅有一个入度为零的点(源点)和仅仅有一个出度为零的点(汇点)。
关键路径:是从開始点到完毕点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所看到的,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。
9 11 1 2 6 1 3 4 1 4 5 2 5 1 3 5 1 4 6 2 5 7 9 5 8 7 6 8 4 8 9 4 7 9 2
18 1 2 2 5 5 7 7 9
最长路+记录字典序最小路径(即假设有多条最长路输出字典序最小的那条 比方 1->2->4 和 1->3->4 都符合最长路,那么输出1->2->4 ) 主要实现就是在松弛时,当dis[v]==dis[u]+w 时,推断一下路径的字典序来决定是否更新路径,眼下还是仅仅会暴力推断QAQ
#include <iostream> #include <cstring> #include <cstdio> #include <cctype> #include <cstdlib> #include <algorithm> #include <set> #include <vector> #include <string> #include <cmath> #include <map> #include <queue> using namespace std; #define LL long long const int INF = 0x3f3f3f3f; int s1[10010], s2[10010], ans[10010], dis[10010], in[10010], out[10010], path[10010], n, m, s, e; bool vis[10010]; vector <pair<int, int> > eg[50010]; bool ok(int u, int v) { int p = v, num1 = 0; s1[num1++] = v; while (path[p] != -1) { s1[num1++] = path[p]; p = path[p]; } p = u; int num2 = 0; s2[num2++] = v; s2[num2++] = u; while (path[p] != -1) { s2[num2++] = path[p]; p = path[p]; } int i = num1 - 1, j = num2 - 1; while (i >= 0 && j >= 0) { if (s1[i] > s2[j]) { return 1; } i--; j--; } return 0; } void spfa() { queue <int> Q; for (int i = 1; i <= n; i++) { dis[i] = -INF; } dis[s] = 0; Q.push(s); while (!Q.empty()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i = 0; i < eg[u].size(); i++) { int v = eg[u][i].first; int w = eg[u][i].second; if (dis[v] < dis[u] + w) { dis[v] = dis[u] + w; path[v] = u; if (!vis[v]) { vis[v] = 1; Q.push(v); } } else if (dis[v] == dis[u] + w && ok(u, v)) { path[v] = u ; if (!vis[v]) { vis[v] = 1; Q.push(v); } } } } } void print() { int p = e, num = 0; while (path[p] != -1) { ans[num++] = path[p]; p = path[p]; } printf("%d\n", dis[e]); for (int i = num - 1; i > 0; i--) { printf("%d %d\n", ans[i], ans[i - 1]); } printf("%d %d\n", ans[0], e); } int main() { int u, v, c; while (~scanf("%d %d", &n, &m)) { for (int i = 0; i <= n; i++) { eg[i].clear(); } memset(in, 0, sizeof(in)); memset(out, 0, sizeof(out)); memset(vis, 0, sizeof(vis)); memset(path, -1, sizeof(path)); while (m--) { scanf("%d%d%d", &u, &v, &c); eg[u].push_back(make_pair(v, c)); in[v]++; out[u]++; } for (int i = 1; i <= n; i++) { if (!in[i]) { s = i; } if (!out[i]) { e = i; } } spfa(); print(); } return 0; }