并查集

并查集--学习详解

文章作者:yx_th000 文章来源:Cherish_yimi (http://www.cnblogs.com/cherish_yimi/)

 

转自:http://www.cnblogs.com/MiYu

 

更多题目:HDU 1116 1142 1213 1272 1325

     并查集:(union-find sets)

一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数等。最完美的应用当属:实现Kruskar算法求最小生成树。

    并查集的精髓(即它的三种操作,结合实现代码模板进行理解):

1、Make_Set(x) 把每一个元素初始化为一个集合

初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

2、Find_Set(x) 查找一个元素所在的集合

查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。

判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。

合并两个集合,也是使一个集合的祖先成为另一个集合的祖先,具体见示意图

3、Union(x,y) 合并x,y所在的两个集合

合并两个不相交集合操作很简单:

利用Find_Set找到其中两个集合的祖先,

         并查集的优化

1、Find_Set(x)时 路径压缩

寻找祖先时我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度,有没有办法减小这个复杂度呢?

答案是肯定的,这就是路径压缩,即当我们经过"递推"找到祖先节点后,"回溯"的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示;可见,路径压缩方便了以后的查找。

2、Union(x,y)时 按秩合并

即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。

 

         主要代码实现

 int father[MAX];   /* father[x]表示x的父节点*/

 int rank[MAX];     /* rank[x]表示x的秩*/





 /* 初始化集合*/

 void Make_Set(int x)

 {

     father[x] = x; //根据实际情况指定的父节点可变化

    rank[x] = 0;   //根据实际情况初始化秩也有所变化

 }





将一个集合的祖先指向另一个集合的祖先。如图

 /* 查找x元素所在的集合,回溯时压缩路径*/

int Find_Set(int x)

 {

    if (x != father[x])

    {

         father[x] = Find_Set(father[x]); //这个回溯时的压缩路径是精华

     }

     return father[x];

}



    按秩合并x,y所在的集合

    下面的那个if else结构不是绝对的,具体根据情况变化

    但是,宗旨是不变的即,按秩合并,实时更新秩。

*/

 void Union(int x, int y)

 {

     x = Find_Set(x);

     y = Find_Set(y);

     if (x == y) return;

    if (rank[x] > rank[y]) 

    {

         father[y] = x;

    }

     else

     {

         if (rank[x] == rank[y])

         {

             rank[y]++;

        }

         father[x] = y;

     }

}



注:学习并查集时非常感谢Slyar提供的资料,这里注明链接:http://www.slyar.com/blog/

另外,我认为写并查集时涉及到的路径压缩,最好用递归,一方面代码的可读性非常好,另一方面,可以更直观的理解路径压缩时在回溯时完成的巧妙。

 

题目地址:
         http://acm.hdu.edu.cn/showproblem.php?pid=1232
题目描述:

畅通工程

Time Limit: 
4000 / 2000  MS (Java / Others)    Memory Limit:  65536 / 32768  K (Java / Others)
Total Submission(s): 
8662     Accepted Submission(s):  4316


Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路? 
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( 
<   1000  )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 
注意:两个城市之间可以有多条道路相通,也就是说
3   3
1   2
1   2
2   1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。 
 

Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。 
 

Sample Input
4   2
1   3
4   3
3   3
1   2
1   3
2   3
5   2
1   2
3   5
999   0
0
 

Sample Output
1
0
2
998


题目分析:

典型的并查集题目.   更多并查集详细资料 请点击 :   并查集学习详解

只需要将各对元素加入并查集, 最后扫描集合的个数 nCount , 所以最后需要修的路为 nCount - 1 : n 点之间有 n - 1条边.
#include <iostream>

using namespace std;

int Father[1005]; //表示x的父节点 

int Rank[1005];		//表示x的秩 

void MakeSet(int x)

{

	Father[x] = x;

	Rank[x] = 0;	

}

int FindSet(int x)

{

	if(Father[x] != x)

	{

		Father[x] = FindSet(Father[x]);

	}

	return Father[x];

}

void Union(int x, int y)

{

	x = FindSet(x);

	y = FindSet(y);

	

	if(x == y) return;

	if(Rank[x] > Rank[y])

	{

		Father[y] = x;

	}

	else

	{

		if(Rank[x] = Rank[y])

			Rank[y]++;

		Father[x] = y;

	} 

} 

int main()

{

	int n,m;

	while(scanf("%d%d",&n,&m) && n)

	{

		int i,x,y;

		for(i = 1 ; i <= n;i++)

			MakeSet(i);

		for(i = 0 ; i < m ; i++)

		{

			scanf("%d%d",&x,&y);

			Union(x,y);	

		}

		int cnt = 0;

		for(i = 1; i <= n; i++)

			if(Father[i] == i)

				cnt++;

		printf("%d\n",cnt - 1); 

	}

	return 0;

}



 

比较通俗易懂的理解。。。。

下面的是一网友的全面分析过程:

首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是3个连通分支,则只要再修两条路……

以下面这组数据输入数据来说明

4 2 1 3 4 3

第一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。只要再加一条路,把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能吧,城镇有几百个,路有不知道多少条,而且可能有回路。 这可如何是好?

我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!

并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。

int pre[1000 ];

int find(int x){ //查找根节点

int r=x; while (pre[r ]!=r) r=pre[r ]; //路径压缩

int i=x; int j; while(i!=r) { j=pre[i ]; pre[i ]=r; i=j; } //返回根节点

return r;

void join(int x,int y) { //判断x y是否连通

//如果已经连通,就不用管了 //如果不连通,就把它们所在的连通分支合并起,

int fx=find(x),fy=find(y);

if(fx!=fy) pre[fx ]=fy; }

为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

http://i3.6.cn/cvbnm/6f/ec/f4/1e9cfcd3def64d26ed1a49d72c1f6db9.jpg

 

下面我们来看并查集的实现。 int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int find(int x) { //查找根节点

int r=x; while (pre[r ]!=r)//如果我的上级不是掌门

r=pre[r ];//我就接着找他的上级,直到找到掌门为止。

//返回根节点

return r;//掌门驾到~~~

} 再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int x,int y)//我想让虚竹和周芷若做朋友

{ int fx=find(x),fy=find(y); //虚竹的老大是玄慈,

芷若MM的老大是灭绝

if(fx!=fy)//玄慈和灭绝显然不是同一个人

pre[fx ]=fy;//方丈只好委委屈屈地当了师太的手下啦

}

再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么胎唇样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。

http://i3.6.cn/cvbnm/60/98/92/745b3eac68181e4ee1fa8d1b8bca38bc.jpg

 

回到开头提出的问题,我的代码如下:

#include int pre[1000 ];

int find(int x) {

int r=x;

while (pre[r ]!=r)

r=pre[r ];

int i=x; int j;

while(i!=r)

{

j=pre[i ]; pre[i ]=r; i=j;

}

return r;

}

int main()

{ int n,m,p1,p2,i,total,f1,f2;

while(scanf("%d",&n) && n)//读入n,如果n为0,结束 { //刚开始的时候,有n个城镇,一条路都没有 //那么要修n-1条路才能把它们连起来

total=n-1;

//每个点互相独立,自成一个集合,从1编号到n //所以每个点的上级都是自己

for(i=1;i<=n;i++) { pre[i ]=i; } //共有m条路

scanf("%d",&m); while(m--) { //下面这段代码,其实就是join函数,只是稍作改动以适应题目要求

//每读入一条路,看它的端点p1,p2是否已经在一个连通分支里了

scanf("%d %d",&p1,&p2);

f1=find(p1); f2=find(p2);

//如果是不连通的,那么把这两个分支连起来

//分支的总数就减少了1,还需建的路也就减了1

if(f1!=f2) { pre[f2 ]=f1; total--;

}

//如果两点已经连通了,那么这条路只是在图上增加了一个环 //对连通性没有任何影响,无视掉

}

//最后输出还要修的路条数

printf("%d\n",total); } return 0;

}

你可能感兴趣的:(并查集)