// //CLASS //ExLightBounds - illustrate use of light influencing bounds, and // bounding leaves // //LESSON //Add a DirectionalLight node to illuminate a scene, then adjust //its influencing bounds // //SEE ALSO //ExAmbientLight //ExPointLight //ExSpotLight //ExLightScope // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // import java.applet.Applet; import java.awt.AWTEvent; import java.awt.BorderLayout; import java.awt.CheckboxMenuItem; import java.awt.Component; import java.awt.Cursor; import java.awt.Frame; import java.awt.Menu; import java.awt.MenuBar; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.InputEvent; import java.awt.event.ItemEvent; import java.awt.event.ItemListener; import java.awt.event.MouseEvent; import java.awt.event.WindowEvent; import java.awt.event.WindowListener; import java.io.File; import java.util.Enumeration; import java.util.EventListener; import javax.media.j3d.AmbientLight; import javax.media.j3d.Appearance; import javax.media.j3d.Behavior; import javax.media.j3d.BoundingLeaf; import javax.media.j3d.BoundingSphere; import javax.media.j3d.Bounds; import javax.media.j3d.BranchGroup; import javax.media.j3d.Canvas3D; import javax.media.j3d.DirectionalLight; import javax.media.j3d.Group; import javax.media.j3d.Light; import javax.media.j3d.Material; import javax.media.j3d.Transform3D; import javax.media.j3d.TransformGroup; import javax.media.j3d.WakeupCriterion; import javax.media.j3d.WakeupOnAWTEvent; import javax.media.j3d.WakeupOnElapsedFrames; import javax.media.j3d.WakeupOr; import javax.vecmath.Color3f; import javax.vecmath.Matrix4d; import javax.vecmath.Point3d; import javax.vecmath.Point3f; import javax.vecmath.Vector3d; import javax.vecmath.Vector3f; import com.sun.j3d.utils.geometry.Primitive; import com.sun.j3d.utils.geometry.Sphere; import com.sun.j3d.utils.universe.PlatformGeometry; import com.sun.j3d.utils.universe.SimpleUniverse; import com.sun.j3d.utils.universe.Viewer; import com.sun.j3d.utils.universe.ViewingPlatform; public class ExLightBounds extends Java3DFrame { //-------------------------------------------------------------- // SCENE CONTENT //-------------------------------------------------------------- // // Nodes (updated via menu) // private DirectionalLight light = null; private Bounds worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent private Bounds smallBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1.0); // Extent private Bounds tinyBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 0.2); // Extent private BoundingLeaf leafBounds = null; private TransformGroup leafTransformGroup = null; // // Build scene // public Group buildScene() { // Get the current bounding leaf position Point3f pos = (Point3f) positions[currentPosition].value; // Turn off the example headlight setHeadlightEnable(false); // Build the scene group Group scene = new Group(); // BEGIN EXAMPLE TOPIC // Create a bounding leaf we'll use or not use depending // upon menu selections. Put it within a transform group // so that we can move the leaf about. leafTransformGroup = new TransformGroup(); leafTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D tr = new Transform3D(); tr.setTranslation(new Vector3f(pos)); leafTransformGroup.setTransform(tr); leafBounds = new BoundingLeaf(worldBounds); leafBounds.setCapability(BoundingLeaf.ALLOW_REGION_WRITE); leafTransformGroup.addChild(leafBounds); scene.addChild(leafTransformGroup); // Add a directional light whose bounds we'll modify // Set its color and aim direction light = new DirectionalLight(); light.setEnable(true); light.setColor(White); light.setDirection(new Vector3f(1.0f, 0.0f, -1.0f)); light.setCapability(DirectionalLight.ALLOW_INFLUENCING_BOUNDS_WRITE); // Set the bounds to be either from the leaf or from // explicit bounds, depending upon the menu initial state if (boundingLeafOnOff) // Use bounding leaf light.setInfluencingBoundingLeaf(leafBounds); else // Use bounds on the light light.setInfluencingBounds(worldBounds); // Set the scope list to include nothing initially. // This defaults to "universal scope" which covers // everything. scene.addChild(light); // Add an ambient light to dimly illuminate the rest of // the shapes in the scene to help illustrate that the // directional light is being bounded... otherwise it looks // like we're just removing shapes from the scene AmbientLight ambient = new AmbientLight(); ambient.setEnable(true); ambient.setColor(White); ambient.setInfluencingBounds(worldBounds); scene.addChild(ambient); // END EXAMPLE TOPIC // Build foreground geometry scene.addChild(new SphereGroup()); return scene; } //-------------------------------------------------------------- // USER INTERFACE //-------------------------------------------------------------- // // Main // public static void main(String[] args) { ExLightBounds ex = new ExLightBounds(); ex.initialize(args); ex.buildUniverse(); ex.showFrame(); } // Bounds mode On/off choices private boolean boundingLeafOnOff = true; private CheckboxMenuItem boundingLeafOnOffMenu = null; // Bounds menu choices private NameValue[] bounds = { new NameValue("Tiny bounds", tinyBounds), new NameValue("Small bounds", smallBounds), new NameValue("Big bounds", worldBounds), }; private int currentBounds = 2; private CheckboxMenu boundsMenu = null; // Position menu choices private NameValue[] positions = { new NameValue("Origin", Origin), new NameValue("+X", PlusX), new NameValue("-X", MinusX), new NameValue("+Y", PlusY), new NameValue("-Y", MinusY), new NameValue("+Z", PlusZ), new NameValue("-Z", MinusZ), }; private int currentPosition = 0; private CheckboxMenu positionMenu = null; // // Initialize the GUI (application and applet) // public void initialize(String[] args) { // Initialize the window, menubar, etc. super.initialize(args); exampleFrame.setTitle("Java 3D Light Bounds Example"); // // Add a menubar menu to change node parameters // Use bounding leaf // Bounds size --> // Bounding leaf position --> // Menu m = new Menu("DirectionalLight"); boundingLeafOnOffMenu = new CheckboxMenuItem("Use bounding leaf", boundingLeafOnOff); boundingLeafOnOffMenu.addItemListener(this); m.add(boundingLeafOnOffMenu); boundsMenu = new CheckboxMenu("Bounds size", bounds, currentBounds, this); m.add(boundsMenu); positionMenu = new CheckboxMenu("Bounding leaf position", positions, currentPosition, this); if (boundingLeafOnOff) // Bounding leaf on positionMenu.setEnabled(true); else // Bounding leaf off positionMenu.setEnabled(false); m.add(positionMenu); exampleMenuBar.add(m); } // // Handle checkboxes and menu choices // public void checkboxChanged(CheckboxMenu menu, int check) { if (menu == boundsMenu) { // Change the light bounds currentBounds = check; Bounds bou = (Bounds) bounds[check].value; if (boundingLeafOnOff) { // Change the bounding leaf's bounds leafBounds.setRegion(bou); // Kick the light to get it to update // its bounds now that the leaf has // changed... (only necessary in the // Alpha release of Java3D) light.setInfluencingBoundingLeaf(leafBounds); } else { // Change the light's own bounds light.setInfluencingBounds(bou); } return; } if (menu == positionMenu) { // Change the bounding leaf position currentPosition = check; Point3f pos = (Point3f) positions[check].value; Transform3D tr = new Transform3D(); tr.setTranslation(new Vector3f(pos)); leafTransformGroup.setTransform(tr); // Kick the light to get it to update // its bounds now that the leaf has // changed... (only necessary in the // Alpha release of Java3D) light.setInfluencingBoundingLeaf(leafBounds); return; } // Handle all other checkboxes super.checkboxChanged(menu, check); } public void itemStateChanged(ItemEvent event) { Object src = event.getSource(); if (src == boundingLeafOnOffMenu) { boundingLeafOnOff = boundingLeafOnOffMenu.getState(); if (boundingLeafOnOff) { // Use the bounding leaf light.setInfluencingBoundingLeaf(leafBounds); // A bounding leaf overrides bounds, // but for neatness we can turn them off // (doesn't work in Alpha release of Java3D) light.setInfluencingBounds(null); positionMenu.setEnabled(true); } else { // Use bounds on the light itself Bounds bou = (Bounds) bounds[currentBounds].value; light.setInfluencingBoundingLeaf(null); light.setInfluencingBounds(bou); positionMenu.setEnabled(false); } return; } // Handle all other checkboxes super.itemStateChanged(event); } } // //CLASS //SphereGroup - create a group of spheres on the XY plane // //DESCRIPTION //An XY grid of spheres is created. The number of spheres in X and Y, //the spacing in X and Y, the sphere radius, and the appearance can //all be set. // //This grid of spheres is used by several of the examples as a generic //bit of foreground geometry. // //SEE ALSO //Ex*Light //ExBackground* // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // class SphereGroup extends Group { // Constructors public SphereGroup() { // radius x,y spacing x,y count appearance this(0.25f, 0.75f, 0.75f, 5, 5, null); } public SphereGroup(Appearance app) { // radius x,y spacing x,y count appearance this(0.25f, 0.75f, 0.75f, 5, 5, app); } public SphereGroup(float radius, float xSpacing, float ySpacing, int xCount, int yCount) { this(radius, xSpacing, ySpacing, xCount, yCount, null); } public SphereGroup(float radius, float xSpacing, float ySpacing, int xCount, int yCount, Appearance app) { if (app == null) { app = new Appearance(); Material material = new Material(); material.setDiffuseColor(new Color3f(0.8f, 0.8f, 0.8f)); material.setSpecularColor(new Color3f(0.0f, 0.0f, 0.0f)); material.setShininess(0.0f); app.setMaterial(material); } double xStart = -xSpacing * (double) (xCount - 1) / 2.0; double yStart = -ySpacing * (double) (yCount - 1) / 2.0; Sphere sphere = null; TransformGroup trans = null; Transform3D t3d = new Transform3D(); Vector3d vec = new Vector3d(); double x, y = yStart, z = 0.0; for (int i = 0; i < yCount; i++) { x = xStart; for (int j = 0; j < xCount; j++) { vec.set(x, y, z); t3d.setTranslation(vec); trans = new TransformGroup(t3d); addChild(trans); sphere = new Sphere(radius, // sphere radius Primitive.GENERATE_NORMALS, // generate normals 16, // 16 divisions radially app); // it's appearance trans.addChild(sphere); x += xSpacing; } y += ySpacing; } } } /** * The Example class is a base class extended by example applications. The class * provides basic features to create a top-level frame, add a menubar and * Canvas3D, build the universe, set up "examine" and "walk" style navigation * behaviors, and provide hooks so that subclasses can add 3D content to the * example's universe. * <P> * Using this Example class simplifies the construction of example applications, * enabling the author to focus upon 3D content and not the busywork of creating * windows, menus, and universes. * * @version 1.0, 98/04/16 * @author David R. Nadeau, San Diego Supercomputer Center */ class Java3DFrame extends Applet implements WindowListener, ActionListener, ItemListener, CheckboxMenuListener { // Navigation types public final static int Walk = 0; public final static int Examine = 1; // Should the scene be compiled? private boolean shouldCompile = true; // GUI objects for our subclasses protected Java3DFrame example = null; protected Frame exampleFrame = null; protected MenuBar exampleMenuBar = null; protected Canvas3D exampleCanvas = null; protected TransformGroup exampleViewTransform = null; protected TransformGroup exampleSceneTransform = null; protected boolean debug = false; // Private GUI objects and state private boolean headlightOnOff = true; private int navigationType = Examine; private CheckboxMenuItem headlightMenuItem = null; private CheckboxMenuItem walkMenuItem = null; private CheckboxMenuItem examineMenuItem = null; private DirectionalLight headlight = null; private ExamineViewerBehavior examineBehavior = null; private WalkViewerBehavior walkBehavior = null; //-------------------------------------------------------------- // ADMINISTRATION //-------------------------------------------------------------- /** * The main program entry point when invoked as an application. Each example * application that extends this class must define their own main. * * @param args * a String array of command-line arguments */ public static void main(String[] args) { Java3DFrame ex = new Java3DFrame(); ex.initialize(args); ex.buildUniverse(); ex.showFrame(); } /** * Constructs a new Example object. * * @return a new Example that draws no 3D content */ public Java3DFrame() { // Do nothing } /** * Initializes the application when invoked as an applet. */ public void init() { // Collect properties into String array String[] args = new String[2]; // NOTE: to be done still... this.initialize(args); this.buildUniverse(); this.showFrame(); // NOTE: add something to the browser page? } /** * Initializes the Example by parsing command-line arguments, building an * AWT Frame, constructing a menubar, and creating the 3D canvas. * * @param args * a String array of command-line arguments */ protected void initialize(String[] args) { example = this; // Parse incoming arguments parseArgs(args); // Build the frame if (debug) System.err.println("Building GUI..."); exampleFrame = new Frame(); exampleFrame.setSize(640, 480); exampleFrame.setTitle("Java 3D Example"); exampleFrame.setLayout(new BorderLayout()); // Set up a close behavior exampleFrame.addWindowListener(this); // Create a canvas exampleCanvas = new Canvas3D(null); exampleCanvas.setSize(630, 460); exampleFrame.add("Center", exampleCanvas); // Build the menubar exampleMenuBar = this.buildMenuBar(); exampleFrame.setMenuBar(exampleMenuBar); // Pack exampleFrame.pack(); exampleFrame.validate(); // exampleFrame.setVisible( true ); } /** * Parses incoming command-line arguments. Applications that subclass this * class may override this method to support their own command-line * arguments. * * @param args * a String array of command-line arguments */ protected void parseArgs(String[] args) { for (int i = 0; i < args.length; i++) { if (args[i].equals("-d")) debug = true; } } //-------------------------------------------------------------- // SCENE CONTENT //-------------------------------------------------------------- /** * Builds the 3D universe by constructing a virtual universe (via * SimpleUniverse), a view platform (via SimpleUniverse), and a view (via * SimpleUniverse). A headlight is added and a set of behaviors initialized * to handle navigation types. */ protected void buildUniverse() { // // Create a SimpleUniverse object, which builds: // // - a Locale using the given hi-res coordinate origin // // - a ViewingPlatform which in turn builds: // - a MultiTransformGroup with which to move the // the ViewPlatform about // // - a ViewPlatform to hold the view // // - a BranchGroup to hold avatar geometry (if any) // // - a BranchGroup to hold view platform // geometry (if any) // // - a Viewer which in turn builds: // - a PhysicalBody which characterizes the user's // viewing preferences and abilities // // - a PhysicalEnvironment which characterizes the // user's rendering hardware and software // // - a JavaSoundMixer which initializes sound // support within the 3D environment // // - a View which renders the scene into a Canvas3D // // All of these actions could be done explicitly, but // using the SimpleUniverse utilities simplifies the code. // if (debug) System.err.println("Building scene graph..."); SimpleUniverse universe = new SimpleUniverse(null, // Hi-res coordinate // for the origin - // use default 1, // Number of transforms in MultiTransformGroup exampleCanvas, // Canvas3D into which to draw null); // URL for user configuration file - use defaults // // Get the viewer and create an audio device so that // sound will be enabled in this content. // Viewer viewer = universe.getViewer(); viewer.createAudioDevice(); // // Get the viewing platform created by SimpleUniverse. // From that platform, get the inner-most TransformGroup // in the MultiTransformGroup. That inner-most group // contains the ViewPlatform. It is this inner-most // TransformGroup we need in order to: // // - add a "headlight" that always aims forward from // the viewer // // - change the viewing direction in a "walk" style // // The inner-most TransformGroup's transform will be // changed by the walk behavior (when enabled). // ViewingPlatform viewingPlatform = universe.getViewingPlatform(); exampleViewTransform = viewingPlatform.getViewPlatformTransform(); // // Create a "headlight" as a forward-facing directional light. // Set the light's bounds to huge. Since we want the light // on the viewer's "head", we need the light within the // TransformGroup containing the ViewPlatform. The // ViewingPlatform class creates a handy hook to do this // called "platform geometry". The PlatformGeometry class is // subclassed off of BranchGroup, and is intended to contain // a description of the 3D platform itself... PLUS a headlight! // So, to add the headlight, create a new PlatformGeometry group, // add the light to it, then add that platform geometry to the // ViewingPlatform. // BoundingSphere allBounds = new BoundingSphere( new Point3d(0.0, 0.0, 0.0), 100000.0); PlatformGeometry pg = new PlatformGeometry(); headlight = new DirectionalLight(); headlight.setColor(White); headlight.setDirection(new Vector3f(0.0f, 0.0f, -1.0f)); headlight.setInfluencingBounds(allBounds); headlight.setCapability(Light.ALLOW_STATE_WRITE); pg.addChild(headlight); viewingPlatform.setPlatformGeometry(pg); // // Create the 3D content BranchGroup, containing: // // - a TransformGroup who's transform the examine behavior // will change (when enabled). // // - 3D geometry to view // // Build the scene root BranchGroup sceneRoot = new BranchGroup(); // Build a transform that we can modify exampleSceneTransform = new TransformGroup(); exampleSceneTransform .setCapability(TransformGroup.ALLOW_TRANSFORM_READ); exampleSceneTransform .setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); exampleSceneTransform.setCapability(Group.ALLOW_CHILDREN_EXTEND); // // Build the scene, add it to the transform, and add // the transform to the scene root // if (debug) System.err.println(" scene..."); Group scene = this.buildScene(); exampleSceneTransform.addChild(scene); sceneRoot.addChild(exampleSceneTransform); // // Create a pair of behaviors to implement two navigation // types: // // - "examine": a style where mouse drags rotate about // the scene's origin as if it is an object under // examination. This is similar to the "Examine" // navigation type used by VRML browsers. // // - "walk": a style where mouse drags rotate about // the viewer's center as if the viewer is turning // about to look at a scene they are in. This is // similar to the "Walk" navigation type used by // VRML browsers. // // Aim the examine behavior at the scene's TransformGroup // and add the behavior to the scene root. // // Aim the walk behavior at the viewing platform's // TransformGroup and add the behavior to the scene root. // // Enable one (and only one!) of the two behaviors // depending upon the current navigation type. // examineBehavior = new ExamineViewerBehavior(exampleSceneTransform, // Transform // gorup // to // modify exampleFrame); // Parent frame for cusor changes examineBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(examineBehavior); walkBehavior = new WalkViewerBehavior(exampleViewTransform, // Transform // group to // modify exampleFrame); // Parent frame for cusor changes walkBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(walkBehavior); if (navigationType == Walk) { examineBehavior.setEnable(false); walkBehavior.setEnable(true); } else { examineBehavior.setEnable(true); walkBehavior.setEnable(false); } // // Compile the scene branch group and add it to the // SimpleUniverse. // if (shouldCompile) sceneRoot.compile(); universe.addBranchGraph(sceneRoot); reset(); } /** * Builds the scene. Example application subclasses should replace this * method with their own method to build 3D content. * * @return a Group containing 3D content to display */ public Group buildScene() { // Build the scene group containing nothing Group scene = new Group(); return scene; } //-------------------------------------------------------------- // SET/GET METHODS //-------------------------------------------------------------- /** * Sets the headlight on/off state. The headlight faces forward in the * direction the viewer is facing. Example applications that add their own * lights will typically turn the headlight off. A standard menu item * enables the headlight to be turned on and off via user control. * * @param onOff * a boolean turning the light on (true) or off (false) */ public void setHeadlightEnable(boolean onOff) { headlightOnOff = onOff; if (headlight != null) headlight.setEnable(headlightOnOff); if (headlightMenuItem != null) headlightMenuItem.setState(headlightOnOff); } /** * Gets the headlight on/off state. * * @return a boolean indicating if the headlight is on or off */ public boolean getHeadlightEnable() { return headlightOnOff; } /** * Sets the navigation type to be either Examine or Walk. The Examine * navigation type sets up behaviors that use mouse drags to rotate and * translate scene content as if it is an object held at arm's length and * under examination. The Walk navigation type uses mouse drags to rotate * and translate the viewer as if they are walking through the content. The * Examine type is the default. * * @param nav * either Walk or Examine */ public void setNavigationType(int nav) { if (nav == Walk) { navigationType = Walk; if (walkMenuItem != null) walkMenuItem.setState(true); if (examineMenuItem != null) examineMenuItem.setState(false); if (walkBehavior != null) walkBehavior.setEnable(true); if (examineBehavior != null) examineBehavior.setEnable(false); } else { navigationType = Examine; if (walkMenuItem != null) walkMenuItem.setState(false); if (examineMenuItem != null) examineMenuItem.setState(true); if (walkBehavior != null) walkBehavior.setEnable(false); if (examineBehavior != null) examineBehavior.setEnable(true); } } /** * Gets the current navigation type, returning either Walk or Examine. * * @return either Walk or Examine */ public int getNavigationType() { return navigationType; } /** * Sets whether the scene graph should be compiled or not. Normally this is * always a good idea. For some example applications that use this Example * framework, it is useful to disable compilation - particularly when nodes * and node components will need to be made un-live in order to make * changes. Once compiled, such components can be made un-live, but they are * still unchangable unless appropriate capabilities have been set. * * @param onOff * a boolean turning compilation on (true) or off (false) */ public void setCompilable(boolean onOff) { shouldCompile = onOff; } /** * Gets whether the scene graph will be compiled or not. * * @return a boolean indicating if scene graph compilation is on or off */ public boolean getCompilable() { return shouldCompile; } //These methods will be replaced // Set the view position and direction public void setViewpoint(Point3f position, Vector3f direction) { Transform3D t = new Transform3D(); t.set(new Vector3f(position)); exampleViewTransform.setTransform(t); // how to set direction? } // Reset transforms public void reset() { Transform3D trans = new Transform3D(); exampleSceneTransform.setTransform(trans); trans.set(new Vector3f(0.0f, 0.0f, 10.0f)); exampleViewTransform.setTransform(trans); setNavigationType(navigationType); } // // Gets the URL (with file: prepended) for the current directory. // This is a terrible hack needed in the Alpha release of Java3D // in order to build a full path URL for loading sounds with // MediaContainer. When MediaContainer is fully implemented, // it should handle relative path names, but not yet. // public String getCurrentDirectory() { // Create a bogus file so that we can query it's path File dummy = new File("dummy.tmp"); String dummyPath = dummy.getAbsolutePath(); // strip "/dummy.tmp" from end of dummyPath and put into 'path' if (dummyPath.endsWith(File.separator + "dummy.tmp")) { int index = dummyPath.lastIndexOf(File.separator + "dummy.tmp"); if (index >= 0) { int pathLength = index + 5; // pre-pend 'file:' char[] charPath = new char[pathLength]; dummyPath.getChars(0, index, charPath, 5); String path = new String(charPath, 0, pathLength); path = "file:" + path.substring(5, pathLength); return path + File.separator; } } return dummyPath + File.separator; } //-------------------------------------------------------------- // USER INTERFACE //-------------------------------------------------------------- /** * Builds the example AWT Frame menubar. Standard menus and their options * are added. Applications that subclass this class should build their * menubar additions within their initialize method. * * @return a MenuBar for the AWT Frame */ private MenuBar buildMenuBar() { // Build the menubar MenuBar menuBar = new MenuBar(); // File menu Menu m = new Menu("File"); m.addActionListener(this); m.add("Exit"); menuBar.add(m); // View menu m = new Menu("View"); m.addActionListener(this); m.add("Reset view"); m.addSeparator(); walkMenuItem = new CheckboxMenuItem("Walk"); walkMenuItem.addItemListener(this); m.add(walkMenuItem); examineMenuItem = new CheckboxMenuItem("Examine"); examineMenuItem.addItemListener(this); m.add(examineMenuItem); if (navigationType == Walk) { walkMenuItem.setState(true); examineMenuItem.setState(false); } else { walkMenuItem.setState(false); examineMenuItem.setState(true); } m.addSeparator(); headlightMenuItem = new CheckboxMenuItem("Headlight on/off"); headlightMenuItem.addItemListener(this); headlightMenuItem.setState(headlightOnOff); m.add(headlightMenuItem); menuBar.add(m); return menuBar; } /** * Shows the application's frame, making it and its menubar, 3D canvas, and * 3D content visible. */ public void showFrame() { exampleFrame.show(); } /** * Quits the application. */ public void quit() { System.exit(0); } /** * Handles menu selections. * * @param event * an ActionEvent indicating what menu action requires handling */ public void actionPerformed(ActionEvent event) { String arg = event.getActionCommand(); if (arg.equals("Reset view")) reset(); else if (arg.equals("Exit")) quit(); } /** * Handles checkbox items on a CheckboxMenu. The Example class has none of * its own, but subclasses may have some. * * @param menu * which CheckboxMenu needs action * @param check * which CheckboxMenu item has changed */ public void checkboxChanged(CheckboxMenu menu, int check) { // None for us } /** * Handles on/off checkbox items on a standard menu. * * @param event * an ItemEvent indicating what requires handling */ public void itemStateChanged(ItemEvent event) { Object src = event.getSource(); boolean state; if (src == headlightMenuItem) { state = headlightMenuItem.getState(); headlight.setEnable(state); } else if (src == walkMenuItem) setNavigationType(Walk); else if (src == examineMenuItem) setNavigationType(Examine); } /** * Handles a window closing event notifying the application that the user * has chosen to close the application without selecting the "Exit" menu * item. * * @param event * a WindowEvent indicating the window is closing */ public void windowClosing(WindowEvent event) { quit(); } public void windowClosed(WindowEvent event) { } public void windowOpened(WindowEvent event) { } public void windowIconified(WindowEvent event) { } public void windowDeiconified(WindowEvent event) { } public void windowActivated(WindowEvent event) { } public void windowDeactivated(WindowEvent event) { } // Well known colors, positions, and directions public final static Color3f White = new Color3f(1.0f, 1.0f, 1.0f); public final static Color3f Gray = new Color3f(0.7f, 0.7f, 0.7f); public final static Color3f DarkGray = new Color3f(0.2f, 0.2f, 0.2f); public final static Color3f Black = new Color3f(0.0f, 0.0f, 0.0f); public final static Color3f Red = new Color3f(1.0f, 0.0f, 0.0f); public final static Color3f DarkRed = new Color3f(0.3f, 0.0f, 0.0f); public final static Color3f Yellow = new Color3f(1.0f, 1.0f, 0.0f); public final static Color3f DarkYellow = new Color3f(0.3f, 0.3f, 0.0f); public final static Color3f Green = new Color3f(0.0f, 1.0f, 0.0f); public final static Color3f DarkGreen = new Color3f(0.0f, 0.3f, 0.0f); public final static Color3f Cyan = new Color3f(0.0f, 1.0f, 1.0f); public final static Color3f Blue = new Color3f(0.0f, 0.0f, 1.0f); public final static Color3f DarkBlue = new Color3f(0.0f, 0.0f, 0.3f); public final static Color3f Magenta = new Color3f(1.0f, 0.0f, 1.0f); public final static Vector3f PosX = new Vector3f(1.0f, 0.0f, 0.0f); public final static Vector3f NegX = new Vector3f(-1.0f, 0.0f, 0.0f); public final static Vector3f PosY = new Vector3f(0.0f, 1.0f, 0.0f); public final static Vector3f NegY = new Vector3f(0.0f, -1.0f, 0.0f); public final static Vector3f PosZ = new Vector3f(0.0f, 0.0f, 1.0f); public final static Vector3f NegZ = new Vector3f(0.0f, 0.0f, -1.0f); public final static Point3f Origin = new Point3f(0.0f, 0.0f, 0.0f); public final static Point3f PlusX = new Point3f(0.75f, 0.0f, 0.0f); public final static Point3f MinusX = new Point3f(-0.75f, 0.0f, 0.0f); public final static Point3f PlusY = new Point3f(0.0f, 0.75f, 0.0f); public final static Point3f MinusY = new Point3f(0.0f, -0.75f, 0.0f); public final static Point3f PlusZ = new Point3f(0.0f, 0.0f, 0.75f); public final static Point3f MinusZ = new Point3f(0.0f, 0.0f, -0.75f); } // //INTERFACE //CheckboxMenuListener - listen for checkbox change events // //DESCRIPTION //The checkboxChanged method is called by users of this class //to notify the listener when a checkbox choice has changed on //a CheckboxMenu class menu. // interface CheckboxMenuListener extends EventListener { public void checkboxChanged(CheckboxMenu menu, int check); } /** * ExamineViewerBehavior * * @version 1.0, 98/04/16 */ /** * Wakeup on mouse button presses, releases, and mouse movements and generate * transforms in an "examination style" that enables the user to rotate, * translation, and zoom an object as if it is held at arm's length. Such an * examination style is similar to the "Examine" navigation type used by VRML * browsers. * * The behavior maps mouse drags to different transforms depending upon the * mosue button held down: * * Button 1 (left) Horizontal movement --> Y-axis rotation Vertical movement --> * X-axis rotation * * Button 2 (middle) Horizontal movement --> nothing Vertical movement --> * Z-axis translation * * Button 3 (right) Horizontal movement --> X-axis translation Vertical movement * --> Y-axis translation * * To support systems with 2 or 1 mouse buttons, the following alternate * mappings are supported while dragging with any mouse button held down and * zero or more keyboard modifiers held down: * * No modifiers = Button 1 ALT = Button 2 Meta = Button 3 Control = Button 3 * * The behavior automatically modifies a TransformGroup provided to the * constructor. The TransformGroup's transform can be set at any time by the * application or other behaviors to cause the examine rotation and translation * to be reset. */ // This class is inspired by the MouseBehavior, MouseRotate, // MouseTranslate, and MouseZoom utility behaviors provided with // Java 3D. This class differs from those utilities in that it: // // (a) encapsulates all three behaviors into one in order to // enforce a specific "Examine" symantic // // (b) supports set/get of the rotation and translation factors // that control the speed of movement. // // (c) supports the "Control" modifier as an alternative to the // "Meta" modifier not present on PC, Mac, and most non-Sun // keyboards. This makes button3 behavior usable on PCs, // Macs, and other systems with fewer than 3 mouse buttons. class ExamineViewerBehavior extends ViewerBehavior { // Previous cursor location protected int previousX = 0; protected int previousY = 0; // Saved standard cursor protected Cursor savedCursor = null; /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. */ public ExamineViewerBehavior() { super(); } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. * * @param parent * The AWT Component that contains the area generating mouse * events. */ public ExamineViewerBehavior(Component parent) { super(parent); } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. */ public ExamineViewerBehavior(TransformGroup transformGroup) { super(); subjectTransformGroup = transformGroup; } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. * @param parent * The AWT Component that contains the area generating mouse * events. */ public ExamineViewerBehavior(TransformGroup transformGroup, Component parent) { super(parent); subjectTransformGroup = transformGroup; } /** * Respond to a button1 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton1(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor .getPredefinedCursor(Cursor.HAND_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a rotation // // Compute the delta in X and Y from the previous // position. Use the delta to compute rotation // angles with the mapping: // // positive X mouse delta --> positive Y-axis rotation // positive Y mouse delta --> positive X-axis rotation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xRotationAngle = deltaY * XRotationFactor; double yRotationAngle = deltaX * YRotationFactor; // // Build transforms // transform1.rotX(xRotationAngle); transform2.rotY(yRotationAngle); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); translate.set(matrix.m03, matrix.m13, matrix.m23); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform1, currentTransform); currentTransform.mul(transform2, currentTransform); currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to a button2 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton2(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor .getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive Y mouse delta --> positive Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaY = y - previousY; if (deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double zTranslationDistance = deltaY * ZTranslationFactor; // // Build transforms // translate.set(0.0, 0.0, zTranslationDistance); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1, currentTransform); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to a button3 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton3(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor .getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in X and Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive X mouse delta --> positive X-axis translation // positive Y mouse delta --> negative Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xTranslationDistance = deltaX * XTranslationFactor; double yTranslationDistance = -deltaY * YTranslationFactor; // // Build transforms // translate.set(xTranslationDistance, yTranslationDistance, 0.0); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1, currentTransform); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to an elapsed frames event (assuming subclass has set up a wakeup * criterion for it). * * @param time * A WakeupOnElapsedFrames criterion to respond to. */ public void onElapsedFrames(WakeupOnElapsedFrames timeEvent) { // Can't happen } } /* * * Copyright (c) 1998 David R. Nadeau * */ /** * WalkViewerBehavior is a utility class that creates a "walking style" * navigation symantic. * * The behavior wakes up on mouse button presses, releases, and mouse movements * and generates transforms in a "walk style" that enables the user to walk * through a scene, translating and turning about as if they are within the * scene. Such a walk style is similar to the "Walk" navigation type used by * VRML browsers. * <P> * The behavior maps mouse drags to different transforms depending upon the * mouse button held down: * <DL> * <DT>Button 1 (left) * <DD>Horizontal movement --> Y-axis rotation * <DD>Vertical movement --> Z-axis translation * * <DT>Button 2 (middle) * <DD>Horizontal movement --> Y-axis rotation * <DD>Vertical movement --> X-axis rotation * * <DT>Button 3 (right) * <DD>Horizontal movement --> X-axis translation * <DD>Vertical movement --> Y-axis translation * </DL> * * To support systems with 2 or 1 mouse buttons, the following alternate * mappings are supported while dragging with any mouse button held down and * zero or more keyboard modifiers held down: * <UL> * <LI>No modifiers = Button 1 * <LI>ALT = Button 2 * <LI>Meta = Button 3 * <LI>Control = Button 3 * </UL> * The behavior automatically modifies a TransformGroup provided to the * constructor. The TransformGroup's transform can be set at any time by the * application or other behaviors to cause the walk rotation and translation to * be reset. * <P> * While a mouse button is down, the behavior automatically changes the cursor * in a given parent AWT Component. If no parent Component is given, no cursor * changes are attempted. * * @version 1.0, 98/04/16 * @author David R. Nadeau, San Diego Supercomputer Center */ class WalkViewerBehavior extends ViewerBehavior { // This class is inspired by the MouseBehavior, MouseRotate, // MouseTranslate, and MouseZoom utility behaviors provided with // Java 3D. This class differs from those utilities in that it: // // (a) encapsulates all three behaviors into one in order to // enforce a specific "Walk" symantic // // (b) supports set/get of the rotation and translation factors // that control the speed of movement. // // (c) supports the "Control" modifier as an alternative to the // "Meta" modifier not present on PC, Mac, and most non-Sun // keyboards. This makes button3 behavior usable on PCs, // Macs, and other systems with fewer than 3 mouse buttons. // Previous and initial cursor locations protected int previousX = 0; protected int previousY = 0; protected int initialX = 0; protected int initialY = 0; // Deadzone size (delta from initial XY for which no // translate or rotate action is taken protected static final int DELTAX_DEADZONE = 10; protected static final int DELTAY_DEADZONE = 10; // Keep a set of wakeup criterion for animation-generated // event types. protected WakeupCriterion[] mouseAndAnimationEvents = null; protected WakeupOr mouseAndAnimationCriterion = null; protected WakeupOr savedMouseCriterion = null; // Saved standard cursor protected Cursor savedCursor = null; /** * Default Rotation and translation scaling factors for animated movements * (Button 1 press). */ public static final double DEFAULT_YROTATION_ANIMATION_FACTOR = 0.0002; public static final double DEFAULT_ZTRANSLATION_ANIMATION_FACTOR = 0.01; protected double YRotationAnimationFactor = DEFAULT_YROTATION_ANIMATION_FACTOR; protected double ZTranslationAnimationFactor = DEFAULT_ZTRANSLATION_ANIMATION_FACTOR; /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into a * TransformGroup that must be set using the setTransformGroup method. The * cursor will be changed during mouse actions if the parent frame is set * using the setParentComponent method. * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior() { super(); } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into a * TransformGroup that must be set using the setTransformGroup method. The * cursor will be changed within the given AWT parent Component during mouse * drags. * * @param parent * a parent AWT Component within which the cursor will change * during mouse drags * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(Component parent) { super(parent); } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into the given * TransformGroup. The cursor will be changed during mouse actions if the * parent frame is set using the setParentComponent method. * * @param transformGroup * a TransformGroup whos transform is read and written by the * behavior * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(TransformGroup transformGroup) { super(); subjectTransformGroup = transformGroup; } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into the given * TransformGroup. The cursor will be changed within the given AWT parent * Component during mouse drags. * * @param transformGroup * a TransformGroup whos transform is read and written by the * behavior * * @param parent * a parent AWT Component within which the cursor will change * during mouse drags * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(TransformGroup transformGroup, Component parent) { super(parent); subjectTransformGroup = transformGroup; } /** * Initializes the behavior. */ public void initialize() { super.initialize(); savedMouseCriterion = mouseCriterion; // from parent class mouseAndAnimationEvents = new WakeupCriterion[4]; mouseAndAnimationEvents[0] = new WakeupOnAWTEvent( MouseEvent.MOUSE_DRAGGED); mouseAndAnimationEvents[1] = new WakeupOnAWTEvent( MouseEvent.MOUSE_PRESSED); mouseAndAnimationEvents[2] = new WakeupOnAWTEvent( MouseEvent.MOUSE_RELEASED); mouseAndAnimationEvents[3] = new WakeupOnElapsedFrames(0); mouseAndAnimationCriterion = new WakeupOr(mouseAndAnimationEvents); // Don't use the above criterion until a button 1 down event } /** * Sets the Y rotation animation scaling factor for Y-axis rotations. This * scaling factor is used to control the speed of Y rotation when button 1 * is pressed and dragged. * * @param factor * the double Y rotation scaling factor */ public void setYRotationAnimationFactor(double factor) { YRotationAnimationFactor = factor; } /** * Gets the current Y animation rotation scaling factor for Y-axis * rotations. * * @return the double Y rotation scaling factor */ public double getYRotationAnimationFactor() { return YRotationAnimationFactor; } /** * Sets the Z animation translation scaling factor for Z-axis translations. * This scaling factor is used to control the speed of Z translation when * button 1 is pressed and dragged. * * @param factor * the double Z translation scaling factor */ public void setZTranslationAnimationFactor(double factor) { ZTranslationAnimationFactor = factor; } /** * Gets the current Z animation translation scaling factor for Z-axis * translations. * * @return the double Z translation scaling factor */ public double getZTranslationAnimationFactor() { return ZTranslationAnimationFactor; } /** * Responds to an elapsed frames event. Such an event is generated on every * frame while button 1 is held down. On each call, this method computes new * Y-axis rotation and Z-axis translation values and writes them to the * behavior's TransformGroup. The translation and rotation amounts are * computed based upon the distance between the current cursor location and * the cursor location when button 1 was pressed. As this distance * increases, the translation or rotation amount increases. * * @param time * the WakeupOnElapsedFrames criterion to respond to */ public void onElapsedFrames(WakeupOnElapsedFrames timeEvent) { // // Time elapsed while button down: create a rotation and // a translation. // // Compute the delta in X and Y from the initial position to // the previous position. Multiply the delta times a scaling // factor to compute an offset to add to the current translation // and rotation. Use the mapping: // // positive X mouse delta --> negative Y-axis rotation // positive Y mouse delta --> positive Z-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // if (buttonPressed != BUTTON1) return; int deltaX = previousX - initialX; int deltaY = previousY - initialY; double yRotationAngle = -deltaX * YRotationAnimationFactor; double zTranslationDistance = deltaY * ZTranslationAnimationFactor; // // Build transforms // transform1.rotY(yRotationAngle); translate.set(0.0, 0.0, zTranslationDistance); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform1, currentTransform); // Translate back from the origin by the original translation // distance, plus the new walk translation... but force walk // to travel on a plane by ignoring the Y component of a // transformed translation vector. currentTransform.transform(translate); translate.x += matrix.m03; // add in existing X translation translate.y = matrix.m13; // use Y translation translate.z += matrix.m23; // add in existing Z translation currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); } /** * Responds to a button1 event (press, release, or drag). On a press, the * method adds a wakeup criterion to the behavior's set, callling for the * behavior to be awoken on each frame. On a button prelease, this criterion * is removed from the set. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton1(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position and change // the wakeup criterion to include elapsed time wakeups // so we can animate. previousX = x; previousY = y; initialX = x; initialY = y; // Swap criterion... parent class will not reschedule us mouseCriterion = mouseAndAnimationCriterion; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor .getPredefinedCursor(Cursor.HAND_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: restore original wakeup // criterion which only includes mouse activity, not // elapsed time mouseCriterion = savedMouseCriterion; // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } previousX = x; previousY = y; } /** * Responds to a button2 event (press, release, or drag). On a press, the * method records the initial cursor location. On a drag, the difference * between the current and previous cursor location provides a delta that * controls the amount by which to rotate in X and Y. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton2(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; initialX = x; initialY = y; // Change to a "rotate" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor .getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a rotation // // Compute the delta in X and Y from the previous // position. Use the delta to compute rotation // angles with the mapping: // // positive X mouse delta --> negative Y-axis rotation // positive Y mouse delta --> negative X-axis rotation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = 0; if (Math.abs(y - initialY) > DELTAY_DEADZONE) { // Cursor has moved far enough vertically to consider // it intentional, so get it's delta. deltaY = y - previousY; } if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xRotationAngle = -deltaY * XRotationFactor; double yRotationAngle = -deltaX * YRotationFactor; // // Build transforms // transform1.rotX(xRotationAngle); transform2.rotY(yRotationAngle); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); translate.set(matrix.m03, matrix.m13, matrix.m23); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform2, currentTransform); currentTransform.mul(transform1); currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Responds to a button3 event (press, release, or drag). On a drag, the * difference between the current and previous cursor location provides a * delta that controls the amount by which to translate in X and Y. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton3(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor .getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in X and Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive X mouse delta --> positive X-axis translation // positive Y mouse delta --> negative Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xTranslationDistance = deltaX * XTranslationFactor; double yTranslationDistance = -deltaY * YTranslationFactor; // // Build transforms // translate.set(xTranslationDistance, yTranslationDistance, 0.0); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } } // //CLASS //CheckboxMenu - build a menu of grouped checkboxes // //DESCRIPTION //The class creates a menu with one or more CheckboxMenuItem's //and monitors that menu. When a menu checkbox is picked, the //previous one is turned off (in radio-button style). Then, //a given listener's checkboxChanged method is ca