带权图分为有向和无向,
无向图的最短路径又叫做最小生成树,有prime算法和kruskal算法;
生成树的概念:联通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成树 生成树是联通图的极小连通子图。所谓极小是指:若在树中任意增加一条边,则 将出现一个回路;若去掉一条边,将会使之编程非连通图。生成树各边的权 值总和称为生成素的权。权最小的生成树称为最小生成树,常用的算法有prime算法和kruskal算法。
最短路径问题旨在寻找图中两节点之间的最短路径,常用的算法有:floyd算法和dijkstra算法。
prime算法
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。
算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
kruskal算法
构造一个只含n个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树的根节点,则它是一个含有n棵树的森林 。之后,从网的边集中选取一条权值最小的边,若该边的两个顶点分属不同的树 ,则将其加入子图,也就是这两个顶点分别所在的 两棵树合成一棵树;反之,若该边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林只有一棵树。kruskal算法能够在并查集的基础很快的实现。
floyd算法
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
void floyd() { for(int k = 0; k < n; k ++){ //作为循环中间点的k必须放在最外一层循环 for(int i = 0; i < n; i ++){ for(int j = 0; j < n; j ++){ if(dist[i][j] > dist[i][k] + dist[k][j]){ dist[i][j] = dist[i][k] + dist[k][j]; //dist[i][j]得出的是i到j的最短路径 } } } } }
Dijkstra算法
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
用Dijkstra算法找出以A为起点的单源最短路径步骤如下
const int MAXINT = 32767; const int MAXNUM = 10; int dist[MAXNUM]; int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0) { bool S[MAXNUM]; // 判断是否已存入该点到S集合中 int n=MAXNUM; for(int i=1; i<=n; ++i) { dist[i] = A[v0][i]; S[i] = false; // 初始都未用过该点 if(dist[i] == MAXINT) prev[i] = -1; else prev[i] = v0; } dist[v0] = 0; S[v0] = true; for(int i=2; i<=n; i++) { int mindist = MAXINT; int u = v0; // 找出当前未使用的点j的dist[j]最小值 for(int j=1; j<=n; ++j) if((!S[j]) && dist[j]<mindist) { u = j; // u保存当前邻接点中距离最小的点的号码 mindist = dist[j]; } S[u] = true; for(int j=1; j<=n; j++) if((!S[j]) && A[u][j]<MAXINT) { if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径 { dist[j] = dist[u] + A[u][j]; //更新dist prev[j] = u; //记录前驱顶点 } } } }
reference:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html