- Flutter 常用组件大全
笔沫拾光
flutter
Flutter常用组件大全Flutter提供了丰富的组件来构建UI,以下是常见的组件,按功能类别分类。1️⃣基础布局组件组件作用示例Container盒子容器,支持装饰、边距、大小Container(width:100,height:100,color:Colors.red)Padding内边距Padding(padding:EdgeInsets.all(10),child:Text("Hello
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 【Agent实战】发票信息识别提取专家(AI +OCR技术结合ChatGPT4o能力+结构化prompt(CoT、One-shot等)+Knowledge - RAG+API工具Agent项目实践)
姚瑞南
大模型落地探索及agent搭建RAG技术应用探索prompt实战应用案例人工智能ocrpromptAIGCchatgptgptagi
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录1.项目背景2.项目目标定性:定量:3.发票核心字段概述4.关键举措5.Workflow设计思路及编排5.1整体设计思路5.2流程搭建及解读流程解读:代码节点:解析agent数据
- 知识蒸馏中的温度参数 T(Temperature)的作用
彬彬侠
大模型Temperature温度参数知识蒸馏Distillationpytorchpython
知识蒸馏中的温度参数TTT(Temperature)的作用1.什么是温度参数TTT?在知识蒸馏(KnowledgeDistillation,KD)过程中,教师模型的输出通常是一个概率分布(通过softmax计算得到)。温度参数TTT控制softmax的平滑程度,使得学生模型可以更好地学习教师模型的知识。在标准的softmax函数中,类别iii的概率计算如下:Pi=ezi∑jezjP_i=\frac
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- 【GPT入门】第16课 RAG入门
*星星之火*
大模型gpt
【GPT入门】第16课RAG入门1.RAG概念核心原理主要应用优势挑战RGA工作图解2.RAG系统基本搭建流程1.RAG概念RAG通常指检索增强生成(Retrieval-AugmentedGeneration),是一种将检索技术与生成式人工智能相结合的技术架构,以下是关于它的详细介绍:核心原理检索:RAG会在大量的文本数据中进行检索,这些数据可以是网页、文档、知识库等。它通过各种检索算法和技术,快
- Axios面试题
御风行云天
面试题大全Axios前端面试ajax
Axios面试题1.Axios基础知识1.1什么是Axios及其使用场景?使用场景:总结:1.2Axios与其他HTTP客户端库(如FetchAPI)的比较?Axios特点使用实例FetchAPI特点使用实例比较错误处理JSON数据处理浏览器兼容性可用性和功能1.3Axios的主要特点和优势是什么?主要特点优势2.Axios请求处理2.1如何使用Axios发送GET和POST请求?发送GET请求发
- 支持 40+ 插件,Spring AI Alibaba 简化智能体私有数据集成
阿里云云原生
人工智能spring数据挖掘
作者:张震霆&何裕墙,SpringAIAlibabaContributor在AI智能体(AIAgent)开发的过程中,RAG(Retrieval-AugmentedGeneration)和ToolCalling已经成为两种至关重要的模式。RAG通过结合检索技术和生成模型的强大能力,使智能体能够实时从外部数据源获取信息,并在生成过程中增强其知识深度和推理能力。通过这种方式,智能体不仅能依赖于模型的预
- 云原生边缘计算:分布式智能的最后一公里革命
桂月二二
云原生边缘计算分布式
引言:从集中式云到边缘计算的范式演进阿里云ENS覆盖3000边缘节点,腾讯云ECM支持5ms内就近接入,特斯拉每辆车部署轻量K8s管理AI模型。KubeEdge管理百万边缘设备,AWSWavelength实现5G边缘数据处理延迟0{data:=es.diskQueue.Pop()ifcloud.IsConnected{cloud.Upload(data)}else{es.diskQueue.Ret
- Deepsearch 、Rag 、RraphRag
kse_music
混杂raggraphragdeepsearch
文章目录前言一、Ai-Search1.DeepSearch2.RAG(Retrieval-AugmentedGeneration)3.GraphRAG(Graph-basedRetrieval-AugmentedGeneration)二、选择指南三、结合应用总结前言DeepSearch、RAG(Retrieval-AugmentedGeneration)和GraphRAG这三种技术在智能检索、信息
- 服务器搭建全流程
yzx991013
服务器运维
服务器搭建全流程指南(2025年最新版)一、硬件与服务器选择硬件类型云服务器:推荐阿里云、腾讯云等平台,支持按需付费,适合个人及中小型项目物理服务器:戴尔PowerEdge、惠普ProLiant等企业级设备,适合高并发或大存储需求个人电脑/NAS:通过内网穿透工具(如神卓互联)实现公网访问,适合测试或小型文件服务硬件配置建议CPU:至少4核(如Inteli5或AMDR
- RAG(检索增强生成)系统实践与调优
python_知世
android金融自然语言处理大模型技术人工智能RAG大模型
在人工智能领域,检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技术,它通过从外部数据源中检索相关信息,来辅助大语言模型(LargeLanguageModel,LLM)生成更为准确、上下文相关的答案。1什么是RAG检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技
- Ubuntu20.04搭建Hyperledger Fabric2.4
WangF1rst
基础环境dockergolangraspberrypiarmfabric
基础环境操作系统:ubuntu-20.04.4安装Gitaptinstallgit安装curlaptinstallcurl安装dockeraptinstalldocker.ioapt-yinstalldocker-compose检测docker是否安装成功docker--version启动docker并设置docker为开机自启动systemctlstartdockersystemctlenabl
- CMOS 图像传感器市场趋势和新兴应用
沧海一升
CMOS图像传感器成像CISsensor图像传感器image
2024年底,Yole举办了一场网络研讨会,有关CMOS图像传感器市场的最新趋势和新兴应用,本次网络研讨会由EdgeAI+Vision联盟联合举办,讨论了CIS供应商如何专注于增强传感器功能,以及如何将其产品组合转向更高潜在价值的市场。除此外还探讨了神经形态、光学超表面、短波红外和多光谱成像等新兴传感模式将如何在未来补充CMOS图像传感器,在某些情况下甚至取代CMOS图像传感器。可以在下面链接看到
- 桂链:区块链模型介绍
桂云网络OSG
区块链
桂链区块链基于Hyperledger开发,本文转自HyperledgerFabric。HyperledgerFabric模型¶本节概述了HyperledgerFabric的关键设计特性,这些特性确保其成为全方位、可定制的企业级区块链解决方案:资产—资产定义使得几乎任何具有货币价值的东西都可以在网络上交换,包括从食品到古董汽车再到货币期货。链码—链码执行与交易排序的分离,限制了跨节点类型所需的信任和
- selenium鼠标操作大全
Guff_hys
python开发语言
selenium鼠标操作大全#导包fromseleniumimportwebdriverfromtimeimportsleep#获取浏览器驱动对象driver=webdriver.Edge()#打开urlurl=r"C:\Users\黄永生\Desktop\软件测试\P2C电子市场\web自动化_day01_课件+笔记+资料+代码\02_其他资料\注册A.html"driver.get(url)"
- AI学习指南RAG篇(7)-RAG知识库构建
俞兆鹏
AI学习指南ai
文章目录一、引言二、知识库构建过程1.数据收集1.1数据来源1.2示例代码2.预处理2.1数据清洗2.2示例代码2.3数据格式转换2.4示例代码3.分块3.1分块的目的3.2分块策略3.3示例代码4.向量化4.1向量化的目的4.2示例代码4.3向量数据库4.4示例代码三、总结一、引言在RAG(Retrieval-AugmentedGeneration,检索增强生成)系统中,知识库的构建是至关重要的
- 计算机视觉图像处理面试笔试题整理——边缘检测
fpga和matlab
图像处理计算机视觉图像面试笔试计算机视觉面试笔试
目录1.边缘检测综述2.Roberts算子3.Prewitt算子4.Sobel算子5.Laplace算子6.Canny1.边缘检测综述边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。图像边缘是图像最基本的特征,所谓**边缘**(Edge)是指图像局部特性的不连续性。灰度或结构等信息的突变处
- 深入解析模型蒸馏(Knowledge Distillation):原理、方法与优化策略
赵大仁
AI大语言模型人工智能人工智能深度学习神经网络机器学习自然语言处理
深入解析模型蒸馏(KnowledgeDistillation):原理、方法与优化策略1.引言随着深度学习模型规模的不断增长,训练和部署大模型的计算成本也越来越高。模型蒸馏(KnowledgeDistillation,KD)是一种广泛使用的模型压缩与优化技术,通过让一个小模型(StudentModel)学习大模型(TeacherModel)的知识,使其能够在保持高准确度的同时降低计算复杂度,从而提升
- 桂链:什么叫区块链网络?
桂云网络OSG
桂链区块链区块链网络服务器
本文由桂云网络转自HyperledgerFabric,桂链基于HyperledgerFabric开发,是桂云网络公司旗下的区块链产品。区块链网络¶这个话题会在概念层面上描述HyperledgerFabric是如何让组织间以区块链网络的形式进行合作的。如果你是一个架构师,管理员或者开发者,你可以通过这个话题来深入理解在HyperledgerFabric区块链网络中的主要结构和处理组件。这个话题会使用
- 12.【线性代数】——图和网络
sda42342342423
math线性代数
十二图和网络(线性代数的应用)图graph={nodes,edges}graph=\{nodes,edges\}graph={nodes,edges}1.关联矩阵2.AAA矩阵的零空间,求解Ax=0Ax=0Ax=0电势3.ATA^TAT矩阵的零空间,电流总结电流图结论图graph={nodes,edges}graph=\{nodes,edges\}graph={nodes,edges}13245n
- 【高级RAG技巧】使用二阶段检索器平衡检索的效率和精度
深度学习机器
大语言模型深度学习入门人工智能语言模型
一传统方法之前的文章已经介绍过向量数据库在RAG(RetrievalAugmentedGenerative)中的应用,本文将会讨论另一个重要的工具-Embedding模型。一般来说,构建生产环境下的RAG系统是直接使用Embedding模型对用户输入的Query进行向量化表示,并且从已经构建好的向量数据库中检索出相关的段落用户大模型生成。但是这种方法很明显会受到Embedding模型性能的影响,比
- 知识蒸馏论文精选——《Graph-Free Knowledge Distillation for Graph Neural Networks 》
宇直不会放弃
GKD-Outputlayer人工智能数据挖掘机器学习深度学习神经网络cnnpytorch
(GFKD)无图知识蒸馏《Graph-FreeKnowledgeDistillationforGraphNeuralNetworks》2021作者是XiangDeng和ZhongfeiZhang,来自纽约州立大学宾汉姆顿分校论文地址见文末摘要知识蒸馏(KnowledgeDistillation,KD)通过强制学生网络模仿在训练数据上预训练老师网络的输出,从而将知识从老师网络转移到学生网络。然而,在
- LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏
宇直不会放弃
GKD-Middlelayer人工智能pythonchatgptgpu算力深度学习机器学习神经网络
LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏《GraphStructureAwareContrastiveKnowledgeDistillationforIncrementalLearninginRecommenderSystems》2021作者是YueningWang、YingxueZhang和MarkCoates论文地址:https://dl.acm.org/doi/10.1145/
- 打造RAG系统:四大向量数据库Milvus、Faiss、Elasticsearch、Chroma 全面对比与选型指南
橙子小哥的代码世界
数据库数据库milvusfaiss人工智能深度学习神经网络elasticsearch
在当今信息爆炸的时代,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)系统已成为自然语言处理(NLP)领域的重要工具。RAG系统通过结合生成模型和信息检索技术,能够在大规模数据中高效地获取相关信息,生成更为精准和有针对性的内容。而在构建RAG系统时,选择合适的向量数据库是确保系统性能和可扩展性的关键一步。本文将深入对比四大主流向量数据库——Milvus、Fai
- AI学习指南RAG篇(4)-RAG的工作流程
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG的工作流程1.检索(Retrieval)1.1检索的目标1.2检索的实现1.3示例代码1.4输出示例2.增强(Augmentation)2.1增强的目标2.2增强的实现2.3示例代码2.4输出示例3.生成(Generation)3.1生成的目标3.2生成的实现3.3示例代码3.4输出示例三、总结一、引言RAG(Retrieval-AugmentedGeneration,检
- 大模型好书推荐 -挖到宝了,500页RAG神书几乎把RAG讲得透透的
脱泥不tony
人工智能语言模型自然语言处理LLMRAG大模型入门大模型
《基于大模型的RAG应用开发与优化——构建企业级LLM应用》是一本专注于RAG(Retrieval-AugmentedGeneration,检索增强生成)技术应用的书籍。该书不仅为读者提供了全面深入的RAG技术知识,还注重实践性和可操作性,帮助读者快速掌握构建企业级LLM应用的能力。一、本书推荐理由《基于大模型的RAG应用开发与优化——构建企业级LLM应用》是一本深度与广度并重、实践导向性强、紧
- 实用建模技术
一条九漏鱼
verilogHdl数字设计与综合fpga开发
1、过程连续赋值1.assign和deassign:该结构目前被认为是很糟糕的编码风格,建议禁用。deassign表示一直保持被赋予的值,直到下一次改变。moduleedge_dff(inputwired,inputwireclk,inputwirerst,outputregq,outputregqbar);always@(posedgeclk)beginq=d;qbar=~d;endalways
- Training-free Neural Architecture Searchthrough Variance of Knowledge of Deep Network Weights(预览版本)
境心镜
免训练深度学习人工智能NAS
代码位置摘要深度学习彻底改变了计算机视觉,但它使用深度网络架构取得了巨大的成功,而这些架构大多是手工制作的,因此可能不是最理想的。神经架构搜索(NAS)旨在通过遵循明确定义的优化范式来弥补这一差距,该范式系统地寻找最佳架构,给定客观标准,例如最大分类准确度。然而,NAS的主要限制是其天文数字般的计算成本,因为它通常需要从头开始训练每个候选网络架构。在本文中,我们旨在通过基于Fisher信息提出一种
- 对于TCP协议三次握手,四次挥手的总结
nihuhui666
tcp/ip服务器网络协议
TCP报头源端口号,目的端口号不用解释,传输层封装的序号(sequencenumber):seq,用来标识表示数据的字节流在第几位开始确认序号(acknowledgenumber):ack,表明数据被收到,并期望从从收到的下一位开始收取URG:紧急标志位ACK:确认标志位,如果置1,开始发送确认序号RST:复位标志位SYN:请求建立链接标志位FIN:结束标志位三次握手1.首先,A请求与B建立链接,
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文