- 基于用户的协同过滤以及ALS的混合召回算法
山水阳泉曲
算法机器学习人工智能矩阵python推荐算法线性代数
文章目录需求基于用户的协同过滤基本步骤相似度计算代码示例(使用余弦相似度)基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替最小二乘(AlternatingLeastSquares,ALS)结合起来,设计一个混合推荐系统。这种系统可以利用
- 向量数据库 Milvus:智能检索新时代
三余知行
「数智通识」「机器学习」数据库milvus智能检索高维数据检索AIGC维护
文章目录Milvus核心技术Milvus基本特点索引策略相似度计算图像检索演示Milvus基础维护环境搭建建立向量索引数据导入数据更新数据删除用户权限管理Milvus评估与调优性能评估调优技巧Milvus数据安全安全策略数据备份与恢复Milvus扩展性案例演示电影推荐在线广告投放结语随着人工智能和大数据技术的不断进步,向量数据库的应用场景愈发广泛。Milvus作为一款优秀的开源向量数据库,凭借其强
- 探秘Elasticsearch:高性能搜索引擎的原理与应用场景(一)
凛鼕将至
搜索引擎elasticsearch大数据
本系列文章简介:本系列文章将探秘Elasticsearch的原理与应用场景,从基本原理到具体应用,带领读者全面了解这一强大的搜索引擎。首先我们将介绍Elasticsearch的基本原理,包括分布式架构、倒排索引和分片等核心概念。然后我们将深入探讨Elasticsearch的搜索原理,包括查询解析、相似度计算和布尔搜索等关键技术。接着我们将讨论Elasticsearch的索引和映射,了解如何对文档进
- 人工智能学习与实训笔记(六):神经网络之智能推荐系统
穿越光年
人工智能技术学习人工智能学习笔记
人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客本篇目录七、智能推荐系统处理7.1常用的推荐系统算法7.2如何实现推荐7.3基于飞桨实现的电影推荐模型7.3.1电影数据类型7.3.2数据处理7.3.4数据读取器7.3.4网络构建7.3.4.1用户特征提取7.3.4.2电影特征提取7.3.4.3相似度计算7.3.4.4网络模型完整代码7.3根据推荐案例的思考七、智能推荐系统处理7.1常用
- hadoot离线与实时的电影推荐系统-计算机毕业设计源码10338
FYKJ_2010
mysqlajaxcssbootstrapvue.js
摘要随着互联网与移动互联网迅速普及,网络上的电影娱乐信息数量相当庞大,人们对获取感兴趣的电影娱乐信息的需求越来越大,个性化的离线与实时的电影推荐系统成为一个热门。然而电影信息的表示相当复杂,己有的相似度计算方法与推荐算法都各有优势,导致单一的相似度计算方法与推荐算法无法合适地应用于离线与实时的电影推荐系统中。大量的电影数据的管理运营随着数据量的增长也变得越来越复杂,因此,如何综合各种算法的优势给用
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- HNSW的基本原理及使用
查叔笔录
本文首发于:http://xzyin.top/hnsw/转载请注明出处:http://xzyin.top/相关系列文章可参考:《大规模向量相似度计算(一)——hnswlib的基本使用示例》《大规模向量相似度计算(二)——hnswlib的参数含义》关注微信公众号:【charlie_mouse】进入技术交流群。1.Smallworldvs.Randomgraph在正式的介绍NSW和HNSW之前,先来了
- LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索
Hugo Lei
LLM工程语言模型postgresql人工智能LLM向量数据库embedding
目录HightLightMac上安装PostgreSQLDBever图形界面管理端创建DB使用向量检索vector相似度计算近似近邻索引HNSW近似近邻索引示例HightLight使用PostgreSQL来存储和检索vector,在数据规模非庞大的情况下,简单高效。可以和在线业务共用一套DB,减少其他组件的引入,降低复杂度,在业务初期可以极大的提升效率。Mac上安装PostgreSQL强烈建议使用
- Python与自然语言处理库Gensim实战
心梓知识
python自然语言处理easyui
一、Gensim简介Gensim是一款Python自然语言处理库。它能够自动化训练出一个文本语料库,然后用该语料库来训练出一个词向量模型。在语料库中,每个语料库都是由一个个文档组成,每个文档则是由若干个单词组成。Gensim相对于其他Python自然语言处理库的优点在于它的速度和内存占用率较低。同时它还提供了许多文本处理的功能,比如文档相似度计算和主题建模等。二、安装Gensim在安装Gensim
- 【爬虫实战】python文本分析库——Gensim
认真写程序的强哥
爬虫pythonPython爬虫Python学习Python文本分析Gensim开发语言
文章目录01、引言02、主题分析以及文本相似性分析03、关键词提取04、Word2Vec嵌入(词嵌入WordEmbeddings)05、FastText嵌入(子词嵌入SubwordEmbeddings)06、文档向量化01、引言Gensim是一个用于自然语言处理和文本分析的Python库,提供了许多强大的功能,包括文档的相似度计算、关键词提取和文档的主题分析,要开始使用Gensim,您需要安装它,
- 如何利用大模型结合文本语义实现文本相似度分析?
小小晓晓阳
LLM文心一言pythonnlp
常规的文本相似度计算有TF-IDF,Simhash、编辑距离等方式,但是常规的文本相似度计算方式仅仅能对文本表面相似度进行分析计算,并不能结合语义分析,而如果使用机器学习、深度学习的方式费时费力,效果也不一定能达到我们满意的状态,随着大模型技术的日渐成熟,我们是否可以利用大模型来完成文本相似度分析呢?本文将结合文心一言4.0来介绍两种文本相似度分析的方法:方式一提供prompt,直接调用大模型接口
- 相似度计算
hzhj
评价指标机器学习人工智能
衡量相同维度的不同向量之间的距离称之为两向量的相似度,其计算方法具体可查看这里参考文献:机器学习中的数学——距离定义:基础知识_知识距离定义-CSDN博客
- Python 库 Difflib
人帝
python开发语言
Python的difflib库豪气现身,它拥有强大的文字比较功能,能帮你快速地找出不同点,使整合过程变得轻松愉快。什么是difflibdifflib是Python标准库的一部分,无需额外安装即可使用。这个库由多个部分组成,主要提供了用于比较序列之间的差异和相似度计算的类和函数。它可以用来比较文件、字符串等,并可以生成差异结果的多种报告,这样我们便可以直观地看到不同之处。由于difflib是随Pyt
- 我用Java写了一个协调过滤算法案例
还得是你大哥
java服务端java算法开发语言
协调过滤算法(CollaborativeFiltering)是一种基于用户行为数据的推荐算法。这里给出一个简单的Java实现案例,使用余弦相似度计算物品之间的相似度,并根据相似度为用户推荐物品。importjava.util.*;publicclassCollaborativeFiltering{publicstaticvoidmain(String[]args){//用户评分数据Map>user
- 基于BERT模型实现文本相似度计算
伪_装
自然语言处理深度学习bert深度学习自然语言
配置所需的包!pipinstalltransformers==2.10.0-ihttps://pypi.tuna.tsinghua.edu.cn/simple!pipinstallHanziConv-ihttps://pypi.tuna.tsinghua.edu.cn/simple数据预处理#-*-coding:utf-8-*-fromtorch.utils.dataimportDatasetfr
- LLM - Transformer 的 Q/K/V 详解
BIT_666
Python深度学习transformer深度学习人工智能
目录一.引言二.传统Q/K/V三.TransformerQ/K/V-InputQuery-Q/K/V获取-Q/K相似度计算-注意力向量-MultiHead四.代码测试-初始化-Attention-Main五.总结一.引言Transformer的输入是我们的一个query句子,例如"我爱中国",但是Transformer处理时却1生3得到了Q/K/V,下面我们从传统机器学习和Transformer两
- 文本相似度计算
Logan_addoil
python大数据学习之旅python
相似度度量:计算个体间相似度相似度值越小,距离越大,相似度越大,距离越小余弦相似度:一个向量空间中两个向量夹角的余弦值作为衡量两个个体之间差异的大小余弦值接近1,夹角趋于0,表明两个向量越相似例如:文本相似度计算1.找出两篇文章的关键词2.每篇文章各取出若干关键词,合并成一个集合,计算每篇文章对于这个词的词频3.生成两篇文章各自的词频向量4.计算两个向量的余弦相似度,值越大就表示越相似import
- 全能相似度计算与语义匹配搜索工具包,多维度实现多种算法,涵盖文本、图像等领域。支持文图搜索,满足您在不同场景下的搜索需求
代码讲故事
机器人智慧之心算法图搜索算法相似度语义匹配图文搜索图像搜索
全能相似度计算与语义匹配搜索工具包,多维度实现多种算法,涵盖文本、图像等领域。支持文图搜索,满足您在不同场景下的搜索需求。Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索Similarities相似度计算、语义匹配搜索工具包,实现了多种相似度计算、匹配搜索算法,支持文本、图像等。文本相似度计算(文本匹配)余弦相
- 文本相似度计算(一):距离方法
Jarkata
文本相似度距离方法1、文本的表示1.1、VSM表示1.2、词向量表示1.3、迁移方法2、距离计算方法2.1、欧氏距离(L2范数)、曼哈顿距离(L1范数)、明氏距离2.2、汉明距离2.3、Jaccard相似系数、Jaccard距离(1-Jaccard相似系数)2.4、余弦距离2.5、皮尔森相关系数2.5、编辑距离场景举例:1)计算Query和文档的相关度、2)问答系统中计算问题和答案的相似度、3)广
- 基于Python实现人脸识别相似度对比
摔跤猫子
python人脸识别相似度对比opencv
目录引言背景介绍目的和意义人脸识别的原理人脸图像获取人脸检测与定位人脸特征提取相似度计算基于Python的人脸相似度对比实现数据集准备人脸图像预处理特征提取相似度计算引言背景介绍人脸识别技术是一种通过计算机对人脸图像进行分析和处理,从而实现自动识别和辨认人脸的技术。随着计算机视觉和模式识别领域的快速发展,人脸识别技术取得了长足的进步。从最早的基于特征点的方法到后来的基于深度学习的方法,人脸识别技术
- python计算地址相似度以及抽取省市区信息的库
AndersonHuang
数据挖掘GISNLPpythonnlp
前言 平时工作上会经常处理地理数据上关于地址地名的相似度计算,或者从地址中抽取省市区信息的内容,所以记录一下一些好用的python库。[MGeo应用]使用AI模型比较地址相似度#pipinstallcryptography#pipinstall"modelscope[nlp]"-fhttps://modelscope.oss-cn-beijing.aliyuncs.com/releases/rep
- 推荐系统|1.3 相似度计算与推荐实例
晓源Galois
推荐系统深度学习推荐算法
二维矩阵中的第i行表示的第i首歌曲在各个用户的评价,而第j列代表的是第j个用户对各个歌曲的评价。如上图,整张二维表是有所空缺的,也就是说一些歌曲的评价信息是不全的。可以先行计算电影之间的相似度,并借由电影之间的相似度,预测电影的评分。比如sim(i,j)代表第i不电影和第j部电影的相似度,如果越相近,则评分将会越相像,且如果两者不像的话,甚至会起到负作用。
- 探索图像检索:从理论到实战的应用
TechLead KrisChang
机器学习深度学习人工智能
目录一、引言二、图像检索技术概述图像检索的基本概念图像检索与文本检索的区别特征提取技术相似度计算索引技术三、图像检索技术代码示例图像特征提取示例相似度计算索引技术四、图像搜索流程架构数据采集与预处理特征提取相似度计算与排名结果呈现与优化五、实际应用图像检索在电子商务领域的应用图像检索在社交媒体中的应用图像检索在云存储服务中的应用本文深入探讨了图像检索技术及其在主流APP中的应用,涵盖了特征提取、相
- 聚类算法(KMeans)模型评估方法(SSE、SC)及案例
小林打怪中
机器学习人工智能聚类算法模型评估
一、概述将相似的样本自动归到一个类别中,不同的相似度计算方法,会得到不同的聚类结果,常用欧式距离法;聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。是无监督学习算法二、分类根据聚类颗粒度:细聚类、粗聚类根据实现方法K-means:按照质心分类,主要介绍K-means,通用、普遍;层次聚类:对数据进行逐层划分,直到达到聚类的类别个数;DBSCAN聚类:一种基于密度的聚类算法
- PyTorch 中的距离函数深度解析:掌握向量间的距离和相似度计算
E寻数据
pytorchpython深度学习pytorch人工智能python机器学习深度学习
目录Pytorch中Distancefunctions详解pairwise_distance用途用法参数数学理论公式示例代码cosine_similarity用途用法参数数学理论示例代码输出结果pdist用途用法参数数学理论示例代码总结Pytorch中Distancefunctions详解pairwise_distancetorch.nn.functional.pairwise_distance是
- 使用ES的快速实现内容相似性推荐
易企秀工程师
问答系统:通过用户给出的一段描述性文本,通过相似度计算查找与用户输入接近的问题相似推荐:用户在浏览当前文章时,基于内容相似性推荐与本篇文章相似的文章more_like_this顾名思义就是帮我找到更多像这个文档的数据,为了便于讲解,这里先构建一个索引库,该索引库包含title和desc两个字段:PUT/search_data{"mappings":{"properties":{"title":{"
- 聚类算法之Kmeans聚类详解
进击的卡特琳娜
机器学习聚类kmeanspython肘方法轮廓系数法
聚类算法是无监督学习算法,它根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧氏距离法。聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。聚类算法的分类:按照聚类细粒度分类:细聚类和粗聚类根据实现方法分类:K-means:按照质心分类,主要介绍K-means,通用、普遍层次聚类:对数据进行逐层划分,直到达到聚
- NLP-文本处理:实体消歧/词义消歧(Entity Disambiguiation / Word Sense Disambiguation)
u013250861
#NLP基础/句法语义分析
一、简单方法1、提前构建好实体库(描述库)2、将文本转为向量将含有待消歧实体的文本句子AAA(实体前后各取10~20个单词),实体库中该实体的各种描述的句子(A1,A2,...A_1,A_2,...A1,A2,...)都转为向量,然后通过余弦相似度计算cos(A,A1),cos(A,A2),...cos(A,A_1),cos(A,A_2),...cos(A,A1),cos(A,A2),...,最后
- 余弦相似度的计算以及公式
爱打网球的小哥哥一枚吖
信息检索信息检索
公式:思想:余弦相似度的思想是通过计算两个向量之间的余弦值来衡量它们的相似程度。如果两个向量之间的夹角越小,它们的余弦值就越接近1,也就意味着它们越相似。而如果它们的夹角越大,余弦值就越接近0,也就意味着它们越不相似。因此,余弦相似度常用于文本分类、推荐系统、图像处理等领域,以评估两个向量之间的相似程度。计算:引用:余弦相似度计算_计算两个向量的余弦相似度-CSDN博客
- 深度学习理论方法:相似度计算
缘起性空、
深度学习人工智能神经网络
深度学习理论中的相似度计算,是衡量两个输入之间相似性或关联性的重要方法。它常用于比较输入是否相似或相关,广泛应用于推荐系统、图像识别、自然语言处理等领域。通过相似度计算,我们能更好地了解数据的内在结构和关系,从而进行更高效的数据分析和处理。例如,在自然语言处理中,利用相似度计算可以比较两个文本的语义相似度,进而实现文本分类、聚类、情感分析等任务。而在图像识别领域,借助相似度计算可以比较两个图像的相
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi