- MSTP技术解析:提升网络负载均衡
Honey\
服务器运维
MSTP背景RSTP/STP的缺陷:RSTP/STP的被阻塞端口阻塞的链路不承载任何流量,无法实现数据的负载均衡;可能有二层次优路径MSTP:通过将一个或多个VLAN映射到instance上,再基于instance进行生成树的计算解决了二层环路问题;提供了二层网络冗余环境;实现流量的负载分担MSTP基本概念MSTRegion(多生成树域):MSTP网络中包含一个或多个MST域MSTI(多生成树实例
- Prim算法实现 -- 结合优先级队列
NLP_wendi
数据结构与算法Prim算法
什么是Prim算法?classPrim2:"""P算法最小生成树算法MSTMinimalSpanningTree保证整个拓扑图的所有路径之和最小"""def__init__(self,graph):n=len(graph)#存放横切边self.min_heap=[]#类似于visited数组,记录节点是否在mst中self.inMst=[False]*nself.weightSum=0#三元组se
- matlab雷达信号与干扰的仿真
matlab
在MATLAB中实现雷达抗干扰的仿真程序需要考虑多个方面,包括雷达信号的生成、干扰信号的添加以及抗干扰算法的设计。雷达信号与干扰的仿真1.参数设置%雷达参数fs=1e6;%采样频率1MHzT=1e-3;%信号持续时间1mst=0:1/fs:T-1/fs;%时间向量fc=100e3;%雷达载波频率100kHzB=10e3;%雷达带宽10kHz%干扰参数fi=120e3;%干扰频率120kHzAi=0
- Minimum/Maximum Spanning Tree/Forest
Razhme
算法初步系列
MST问题。对于一个有权无向图,使其原有连通块保持连通性并形成树,同时边权之和最小。换一种说法,最小生成树或者最小生成森林。两个算法一个推论。Kruskal'sAlgorithm基于贪心。将边排序,从最短边开始,若添加了此边,两个不相连的连通块相连了,就添加,否则看下一条。添加到边数为点数-1为止。用并查集检验是否连通。注意Kruskal的原理为,对于图中任意一个点x,对于x点连出去的所有边,边权
- 图论基础:广度优先搜索与深度优先搜索
夏曦安
图论广度优先搜索深度优先搜索最小生成树算法
图论基础:广度优先搜索与深度优先搜索图论作为计算机科学中重要的数学分支,广泛应用于网络流、最短路径、网络设计等领域。在图论的世界中,图的遍历是基础中的基础,它涉及到许多图算法的设计和实现。本文将重点探讨两种基础的图遍历算法——广度优先搜索(BFS)和深度优先搜索(DFS),以及最小生成树(MST)的相关算法。广度优先搜索(BFS)广度优先搜索是图遍历的一种方法,它从图中的一个顶点开始,尽可能宽广地
- ruskal 最小生成树算法
19要加油
算法
https://www.lanqiao.cn/problems/17138/learning/并查集+ruskal最小生成树算法Kruskal算法是一种用于在加权无向连通图中寻找最小生成树(MST)的经典算法。其核心思想是基于贪心策略,通过按边权从小到大排序并逐步选择边,确保最终形成的树满足以下条件:包含图中所有顶点(即生成树)。边权之和最小(即最小性)。不形成环路(确保是树结构)。算法步骤排序边
- 网工实验——MSTP生成树
鸡哥爱技术
网络
1.网络拓扑图2.相关配置2.1配置switchA的MST配置system-viewsysnameswitchAstpregion-configuration#创建生成树实例region-nameRG1#为实例命名instance1vlan2to10instance2vlan11to20activeregion-configuration#激活实例quit剩下的switchB,C,D的MST配置与
- C++ 解决一个简单的图论问题 —— 最小生成树(以 Prim 算法为例)
potato_potato_123
C/C++算法图论最小生成树prim算法
使用C++解决一个简单的图论问题——最小生成树(以Prim算法为例),并且使用Graphviz库来生成结果图。在图论中,“边权之和最小”是最小生成树(MST)的核心目标,其含义和背景可以从以下几个方面解释:一、基础定义:什么是“边权之和”?边权:图中每条边的权重(Weight),可以代表实际问题中的成本、距离、时间、容量等量化指标。边权之和:对于一个子图(如生成树),将其中所有边的权重相加得到的总
- 算法设计与分析7(贪心算法)
songx_99
算法设计与分析算法
Prim算法(寻找最小生成树)用途:Prim算法是一种贪心算法,用于在加权无向图中寻找最小生成树(MST),即能够连接图中所有顶点且边的权重之和最小的子图。基本思路:从图中任意一个顶点v开始,将其加入到最小生成树的顶点集合S中。不断从与S中顶点相邻的边中选择一条权重最小的边,将这条边连接的另一个顶点加入到S中。重复上述步骤,直到图中所有顶点都被加入到S中,此时得到的子图就是最小生成树。Dijkst
- Objective-C实现prim普里姆算法(附完整源码)
源代码大师
objective-c算法ios
Objective-C实现prim普里姆算法Prim算法是一种用于寻找加权无向图的最小生成树(MinimumSpanningTree,MST)的贪心算法。它的基本思路是从一个起始节点开始,逐步将最小边加入到生成树中,直到所有节点都被包括在内。下面是一个使用Objective-C实现Prim算法的完整源码示例。Objective-C完整源码#import@interfaceGraph:NSObjec
- 【图论】最小生成树——prim算法
fftx_00
图论数据结构算法
一、什么是最小生成树最小生成树(MinimumSpanningTree,MST):在一个给定的无向图G中求一棵树T,树T拥有图G的所有顶点,所有边都来自图G,使得整棵树的边权最小贪心策略:prim算法:让小树长大kruskal算法:将森林合并成树二、prim算法与Dijkstra算法区别:思想几乎完全相同,Dijkstra算法的最短距离指到源点s的最短距离;prim算法的最短距离指到集合s的最短距
- 蓝桥杯备战资料从0开始!!!(python B组)(最全面!最贴心!适合小白!蓝桥云课)图论
手可摘星chen.
蓝桥杯python图论
注:你的关注,点赞,评论让我不停更新一、蓝桥杯图论常见题型最短路径问题单源最短路径(Dijkstra算法)多源最短路径(Floyd-Warshall算法)带有负权边的最短路径(Bellman-Ford算法)最小生成树(MST)Kruskal算法(并查集+贪心)Prim算法(优先队列优化)遍历与连通性DFS/BFS求连通块强连通分量(Tarjan算法)网络流与匹配二分图匹配(匈牙利算法)最大流问题(
- 【算法模板】图论:最小生成树
T0uken
竞赛算法图论算法数据结构
最小生成树给定一张边带权的无向图G=(V,E),n=|V|,m=|E|。由V中全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树。边的权值之和最小的生成树被称为无向图G的最小生成树(MinimumSpanningTree,MST)。给定一张无向图G=(V,E),n=|V|,m=|E|。从E中选出k#include#include#includeusingnamespacestd;c
- 最小生成树理论
勤劳的进取家
算法设计算法矩阵动态规划python数据结构
1.基本定义生成树:在一个连通无向图中,一个生成树是包含所有顶点且边数为n−1(n为顶点数)的无环连通子图。最小生成树:在所有生成树中,边权和最小的那一棵树。也就是说,若每条边有一个非负权值,最小生成树就是使得所有选中边的权值之和最小的生成树。2.基本性质连通性:MST必须覆盖图中的所有顶点,保证图中任意两个顶点之间都有路径连接。无环性:由于MST是一棵树,所以它没有回路。边数:对于一个有n个顶点
- matlab有限元求转子临界转速
kkk1622245
算法
matlab通过有限元法求解柔性支撑的铁木辛柯梁的固有频率,包含各个单元的组装,固有频率的计算!有限元求转子临界转速/Js.m,128有限元求转子临界转速/Ks.m,150有限元求转子临界转速/Ms.m,117有限元求转子临界转速/Msr.m,132有限元求转子临界转速/Mst.m,137有限元求转子临界转速/Untitled5.m,5786
- VRRP+MSTP 实验
卢大人
网络
实验原理MST域是多生成树域(MultipleSpanningTreeRegion),由交换网络中的多台交换设备以及它们之间的网段所构成。同一个MST域的设备具有下列特点:p都启动了MSTP。p具有相同的域名。p具有相同的VLAN到生成树实例映射配置。p具有相同的MSTP修订级别配置。注意1:VLAN映射表是MST域的属性,它描述了VLAN和MSTI之间的映射关系,MSTI可以与一个或多个VLAN
- 图论 之 最小生成树
JNU freshman
蓝桥杯算法图论算法蓝桥杯
文章目录题目1584.连接所有点的最小费用最小生成树MST,有两种算法进行求解,分别是Kruskal算法和Prim算法Kruskal算法从边出发,适合用于稀疏图Prim算法从顶点出发,适合用于稠密图:基本思想是从一个起始顶点开始,逐步扩展生成树,每次选择一条连接已选顶点和未选顶点的最小权重边,直到所有顶点都被包含在生成树中。Prim算法的基本步骤:初始化:选择一个起始顶点,将其加入生成树中。选择最
- CP AUTOSAR标准之HWTestManager(AUTOSAR_SWS_HWTestManager)(更新中……)
瑟寒凌风
经典autosar(CP)平台车载系统linux汽车嵌入式硬件网络
1简介和功能概述 本规范描述了模块硬件测试管理启动和关闭(HTMSS)的概念、接口和配置。 HTMSS模块是AUTOSAR标准化基础软件架构服务层的基础软件模块,HTMSS模块应为应用程序SWC使用提供测试状态/结果。 该模块的目的是提供一个基础设施,用于在AUTOSAR标准软件平台内集成/转换微控制器制造商特定的启动和关闭测试(例如BIST)测试结果/状态。 该模块的基本功能包括从MST
- BZOJ-2521: [Shoi2010]最小生成树(最小割)(本蒟蒻的BZOJ第401 AC撒花~)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2521挺神奇的一个最小割模型,如果要使得该边一定在MST上,那么要保证该边连接的两个连通块之间不存在其他边权小于等于它的边,那么自然就最小割啦。代码:#include#include#includeusingnamespacestd;#definemaxn1010#definemaxv1010#
- 华为 HCIP-Datacom H12-821 题库 (1)
可惜已不在
HCIP华为网络
有需要题库的可以看主页置顶需要题库的加Q裙V群仅进行学习交流1.MSTP有不同的端口角色,对此说法不正确的是:A、MSTP中除边缘端口外,其他端口角色都参与MSTP的计算过程B、MSTP同一端口在不同的生成树实例中可以担任不同的角色。C、MSTP域边缘端口是指位于MST域的边缘并连接其它MST域或SST的端口D、Backup端口作为根端口的备份,提供了从指定桥到根的另一条可切换路径答案:D解析:在
- MSTP多实例生成树(华为)
期待未来的男孩
路由交换网络
目录MSTP简介定义目的MSTP基本概念MSTP的网络层次MST域(MSTRegion)MSTP报文MSTP报文格式MSTP拓扑计算优先级向量CIST的计算MSTI的计算MSTP快速收敛机制配置MSTP+VRRP组合组网示例配置思路操作步骤MSTP简介定义多生成树协议MSTP(MultipleSpanningTreeProtocol)是IEEE802.1s中定义的生成树协议,通过生成多个生成树,来
- LED恒流驱动芯片方案合集-主要应用于热门行业智能家居调光、RGB五路摄影灯补光灯、12V升压汽车车灯、调光电源模块、大功率舞台灯、太阳能灯带、应急灯、显示器背光等LED恒流驱动方案
远翔调光芯片^13828798872
智能家居汽车计算机外设能源科技
深圳市雅欣控制技术有限公司,在芯片行业深耕二十载。是Feeling和MST在深圳的一级代理商。致力于推广销售电源管理芯片、LED驱动芯片和霍尔开关系列产品,为您提供最优化的解决方案、最优质的产品及咨询服务。远翔各型号应用分类:降压芯片:FP6161,FP6188,FP6150B,FP6151。升压芯片:FP5139,FP5207,FP5217,FP6291,FP6293,FP6296,FP6298
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 蓝桥杯:C++贪心算法、字符串函数、朴素模式匹配算法、KMP算法
DaveVV
蓝桥杯c++蓝桥杯c++贪心算法算法开发语言数据结构c语言
贪心算法贪心(Greedy)算法的原理很容易理解:把整个问题分解成多个步骤,在每个步骤都选取当前步骤的最优方案,直到所有步骤结束;每个步骤都不考虑对后续步骤的影响,在后续步骤中也不再回头改变前面的选择。贪心算法虽然简单,但它有广泛的应用。例如图论中的最小生成树(MinimalSpanningTree,MST)算法、单源最短路径算法(Dijkstra)都是贪心算法的典型应用。贪心算法的主要问题是不一
- P3141 [USACO16FEB] Fenced In P题解
smart_stupid
算法c++
题目如果此题数据要小一点,那么我们可以用克鲁斯卡尔算法通过,但是这个数据太大了,空间会爆炸,时间也会爆炸。我们发现,如果用MST做,那么很多边的边权都一样,我们可以整行整列地删除。我们造一个样例解析一下:+-+--+---+||||+-+--+---+||||||||+-+--+---+首先,我们删除第一列的栅栏:+-+--+---+||||++--+---+||||||||+-+--+---+此
- 最小生成树 —— Prim 和 Kruskal 算法
CharlesWu123
数据结构与算法数据结构与算法最小生成树PrimKruskal
最小生成树定义生成树:连通图包含全部顶点的一个极小连通子图最小生成树:对于带权无向连通图G=(V,E),G的所有生成树当中边的权值之和最小的生成树为G的最小生成树(MST)性质最小生成树不一定唯一,即最小生成树的树形不一定唯一。当带权无向连通图G的各边权值不等时或G只有节点数减1条边时,MST唯一最小生成树的权值是唯一的,且是唯一的最小生成树的边数为顶点数减1算法Prim算法适用于稠密图,Krus
- 最小生成树超详细介绍
何不遗憾呢
数据结构c语言
目录一.最小生成树的介绍1.最小生成树的简介2.最小生成树的应用3.最小生成树的得出方法二.Kruskal算法1.基本思想:2.步骤:3.实现细节:4.样例分析:5.Kruskal算法代码实现:三.Prim算法1.基本思想:2.步骤:3.实现细节:4.样例分析:5.Prim算法代码实现四.总结一.最小生成树的介绍1.最小生成树的简介最小生成树(MinimumSpanningTree,简称MST,在
- 数据结构与算法:图论(邻接表板子+BFS宽搜、DFS深搜+拓扑排序板子+最小生成树MST的Prim算法、Kruskal算法、Dijkstra算法)
鸡鸭扣
算法深度优先图论宽度优先图搜索java后端
前言图的难点主要在于图的表达形式非常多,即数据结构实现的形式很多。算法本身不是很难理解。所以建议精通一种数据结构后遇到相关题写个转换数据结构的接口,再套自己的板子。邻接表板子(图的定义和生成)publicclassGraph{publicHashMapnodes;//点集,第一个参数是点的编号。和Node类中的value一致。不一定是Integer类型的,要看具体的题,有的题点编号为字母。publ
- 并查集+巧妙分块,Codeforces1424B. 0-1 MST
EQUINOX1
OJ刷题解题报告算法动态规划c++数据结构图论
目录一、题目1、题目描述2、输入输出2.1输入2.2输出3、原题链接二、解题报告1、思路分析2、复杂度3、代码详解一、题目1、题目描述Ujanhasalotofuselessstuffinhisdrawers,aconsiderablepartofwhicharehismathnotebooks:itistimetosortthemout.Thistimehefoundanolddustygrap
- C#,最小生成树(MST)博鲁夫卡(Boruvka)算法的源代码
深度混淆
C#算法演义AlgorithmRecipesC#算法最小生成树Boruvka
OtakarBoruvka本文给出Boruvka算法的C#实现源代码。Boruvka算法用于查找边加权图的最小生成树(MST),它早于Prim和Kruskal的算法,但仍然可以被认为是两者的关联。一、Boruvka算法的历史1926年,奥塔卡·博鲁夫卡(OtakarBoruvka)首次提出了一种求给定图的MST的方法。这在计算机出现之前就已经存在了,事实上,它被用来设计一个高效的配电系统。Geor
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息