- 2024华为OD机试正式切换E卷,考试注意事项,按算法分类刷题
哪 吒
华为od算法java
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试(JAVA)真题(E卷+D卷+A卷+B卷+C卷)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。2024年8月14日,华为官方已经将华为OD
- 小样本学习综述2025
wuxuand
深度学习计算机视觉深度学习人工智能
一、Few-ShotClass-IncrementalLearningforClassificationandObjectDetection:ASurvey用于分类和目标检测的少样本类增量学习:综述引用:@ARTICLE{10840313,author={Zhang,JinghuaandLiu,LiandSilvén,OlliandPietikäinen,MattiandHu,Dewen},jou
- 星河飞雪网络安全-安全见闻总篇
小陈在努力ii
安全pythonjava1024程序员节
声明学习视频笔记均来自B站UP主"泷羽sec",如涉及侵权马上删除文章笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负安全见闻01-09已全部更新,后续将会持续更新的章节,感谢各位师傅的点赞关注,冲!目录声明1.常见编程语言(安全见闻01)1.1函数式编程语言1.2数据科学和机器学习领域1.3Web全栈开发1.4移动开发1.5嵌入式系统开发
- 向量数据库的新浪潮:支持向量及标量查询的解决方案
一休哥助手
数据库数据库向量数据库
向量数据库的新浪潮:支持向量及标量查询的解决方案在数据密集型的应用场景中,向量数据库已经成为了一种不可或缺的技术。尤其是在机器学习和人工智能领域,向量数据库能够高效地处理高维数据,为相似性搜索、推荐系统等提供强大支持。然而,随着数据的多样化,单纯的向量搜索已经不能满足所有的需求。因此,支持向量查询同时也支持标量查询(固定条件过滤)的向量数据库成为了新的焦点。本文将探讨几种这样的数据库,并进行比较。
- 2025年——【寒假】自学黑客计划(网络安全)
网安CILLE
web安全网络安全网络安全linux
CSDN大礼包:基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客
- 《Python实战进阶》No34:卷积神经网络(CNN)图像分类实战
带娃的IT创业者
Python实战进阶pythoncnn分类
第34集:卷积神经网络(CNN)图像分类实战摘要卷积神经网络(CNN)是计算机视觉领域的核心技术,特别擅长处理图像分类任务。本集将深入讲解CNN的核心组件(卷积层、池化层、全连接层),并演示如何使用PyTorch构建一个完整的CNN模型,在CIFAR-10数据集上实现图像分类。我们还将探讨数据增强和正则化技术(如Dropout和BatchNorm)对模型性能的影响。核心概念和知识点1.CNN的核心
- MySQL - 数据库基础操作
忆往夕梦
MySQL数据库mysqlsql
SQL语句结构化查询语言(StructuredQueryLanguage),在关系型数据库上执行数据操作、数据检索以及数据维护的标准语言。分类DDL数据定义语言(DataDefinitionLanguage),定义对数据库对象(库、表、列、索引)的操作。DML数据操作语言(DataManipulationLanguage),定义对数据库记录的操作。DQL数据查询语言(DataQueryLangua
- 网络华为HCIA+HCIP 动态路由协议
ssr——ssss
华为网络华为智能路由器
分类距离矢量算法(相当于抄别人作业不管对不对抄就完了)运行距离矢量路由协议的路由器周期性地泛洪自己的路由表。通过路由的交互,每台路由器都从相邻的路由器学习到路由,并且加载进自己的路由表中,然后再通告给其他相邻路由器。对于网络中的所有路由器而言,路由器并不清楚网络的拓扑,只是简单的知道要去往某个目的网段方向在哪里,开销有多大。链路状态路由协议(相当于自己写)链路状态路由协议通告的的是链路状态而不是路
- 朴素贝叶斯:让AI告诉你,航班延误险该不该买?
舒旻
AI产品经理人工智能
你好,我是舒旻。今天,我们接着来讲一个基础的分类算法,朴素贝叶斯(NBM,NaiveBayesianModel),也可以简称NB算法。你可能想说,贝叶斯我听过,什么叫朴素贝叶斯呢?其实,朴素贝叶斯就是我们在贝叶斯原理的基础上,预先假定了特征与特征之间的相互独立。那特征之间的相互独立是什么意思呢?简单来说,一个人的性别是女性和她是中国国籍这两项特征就是相互独立的,因为她的国籍不会影响到她的性别。那特
- IP 寻址与地址解析
JAZJD
ip网络
目录前言1.IP分类地址2.IP子网与超网3.组成IP超网4.无类地址与CIDR5.配置管理6.地址解析总结前言在互联网协议(IP)的世界中,寻址和地址解析是关键概念。它们使设备能够在互联网上唯一地标识和相互通信。让我们深入了解IP寻址、子网、超网、无类寻址和地址解析的过程。1.IP分类地址IP地址是互联网上设备的唯一标识符。IP分类寻址使用基于类别的方法将IP地址分为不同类别:概述:IP分类寻址
- 关于强化学习小记
文弱_书生
乱七八糟神经网络人工智能强化学习马尔科夫决策
强化学习(ReinforcementLearning,RL)详解1.什么是强化学习?强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过**智能体(Agent)在环境(Environment)中不断尝试不同的动作(Action),并根据环境给予的奖励(Reward)**来学习最优策略(Policy),从而最大化长期回报(Return)。强化学习的核心思想:试错学习(
- 什么是 Embedding?——从直觉到应用的全面解读
忍者算法
人工智能深度学习神经网络机器学习
什么是Embedding?——从直觉到应用的全面解读在机器学习和深度学习的世界里,我们经常会听到“Embedding”这个词。它是深度学习中最核心的概念之一,尤其在自然语言处理(NLP)和推荐系统中应用广泛。但很多初学者对Embedding的理解可能只是:“它是把一个东西转换成数字的方式。”这种解释虽然没错,但过于简略,难以真正理解Embedding的作用。这篇文章将用最直观的方式,带你深入理解E
- python train 函数_Python之并行--基于joblib
weixin_39786850
pythontrain函数
Python的并行远不如Matlab好用。比如Matlab里面并行就直接把for改成parfor就行(当然还要注意迭代时下标的格式),而Python查一查并行,各种乱七八糟的方法一大堆,而且最不爽的一点就是只能对函数进行并行。当然,这点困难也肯定不能就难倒我们,该克服也得克服,毕竟从本质上讲,也就只是实现的方式换一换而已。大名鼎鼎的sklearn里面集成了很方便的并行计算,这在之前的机器学习教程里
- 分布式训练:(Pytorch)
达柳斯·绍达华·宁
分布式pytorch人工智能
分布式训练是将机器学习模型的训练过程分散到多个计算节点或设备上,以提高训练速度和效率,尤其是在处理大规模数据和模型时。分布式训练主要分为数据并行和模型并行两种主要策略:1.数据并行(DataParallelism)数据并行是最常见的分布式训练方式。在这种方法中,模型副本会被复制到多个计算设备上,每个设备处理不同的批次(batch)数据。工作流程:每个设备上都有一个完整的模型副本。数据集被分割成多个
- Python Joblib 使用详解:缓存与并行加速技术
egzosn
python缓存开发语言
Joblib简介Joblib是一个轻量级的Python工具集,主要用于两个方面:结果缓存(Memoization)利用Memory类,可以将函数的输出结果存储到磁盘上,避免多次重复计算。特别适合于数据处理和机器学习中一些耗时计算的场景。并行计算利用Parallel和delayed,可以方便地将循环中的任务分发到多个CPU核心上运行,从而加速计算过程。这些功能使得Joblib成为数据科学、机器学习和
- 机器学习经典算法——决策树算法详解与实现
SVIPCODE
机器学习算法决策树编程
机器学习经典算法——决策树算法详解与实现决策树(DecisionTree)是一种常用的机器学习算法,它是基于树形结构的有监督学习方法之一。在本文中,我们将详细介绍决策树算法的原理,并使用Python代码进行实现。1.决策树算法原理决策树算法通过对数据集进行划分来构建一棵树,每个节点表示一个特征属性,每个分支代表一个属性取值,叶子节点表示分类结果。根据不同的分裂准则,决策树可以采用多种算法进行构建,
- Python(5)Python数据清洗指南:无效数据处理与实战案例解析(附完整代码)
一个天蝎座 白勺 程序猿
python大数据人工智能
目录一、背景与核心价值二、无效数据分类与识别技术1.常见无效数据类型2.高级检测技巧三、六大处理方法深度解析1.精准删除策略2.智能填充技术3.时间序列插值4.异常值分箱处理四、电商销售数据清洗实战1.数据集说明2.四步清洗流程五、工业级处理方案选择矩阵六、总结与进阶建议一、背景与核心价值在数据科学项目中,无效数据(缺失值、异常值、重复值)会导致高达35%的分析误差(来源:IBMDataQuali
- 机器学习模型的保存与加载:使用pickle和joblib
FdmPatch
机器学习人工智能scikit-learn
在机器学习中,模型的保存和加载是非常重要的步骤。一旦我们训练好了一个模型,我们希望能够将其保存到磁盘上,以便以后使用。Python中有几个常用的库可以实现这个功能,包括pickle和Scikit-learn的joblib。本文将介绍如何使用这两个库来保存和加载机器学习模型。使用pickle保存和加载模型Pickle是Python的标准库,可以将Python对象序列化为字节流,然后将其保存到文件中。
- 机器学习经典算法:决策树原理详解
xiaoyu❅
机器学习算法决策树
决策树(DecisionTree)是一种直观且强大的机器学习算法,被广泛用于分类与回归任务。本文从核心原理(信息熵、基尼系数)、构建过程(ID3/C4.5/CART)、剪枝优化到Python代码实战,全方位解析决策树,并教你如何用Graphviz可视化树结构!目录一、什么是决策树?二、决策树的核心原理1.特征划分标准2.关键公式推导3.决策树构建流程三、Python代码实战1.数据集准备2.模型训
- 机器学习入门第三集——如何完整实现一次模型训练
梯度寻优者_超
机器学习人工智能python算法大数据回归数据分析
提示:如何完整的从数据导入到最后模型训练以及模型保存,本集进行介绍。文章目录上集回顾一、数据集是什么?二、完整训练过程1.导入数据2.数据集划分3.模型训练4.模型保存以及加载总结下集预告上集回顾提示:上集已经对机器学习基础知识分类常用算法等进行了描述,这集开始是如何完整训练模型,前两集已经介绍了机器学习的通俗解释,已经常见分类,还有机器学习深度学习强化学习的关系和区别。有想看的小伙伴可以翻我主页
- 【人工智能】图文详解深度学习中的卷积神经网络(CNN)
AI天才研究院
深度学习实战DeepSeekR1&大数据AI人工智能大模型深度学习人工智能cnn神经网络计算机视觉
【人工智能】图文详解深度学习中的卷积神经网络(CNN)概念和原理为什么要使用卷积神经网络?卷积神经网络简介卷积神经网络的数学公式池化操作:全连接层:激活函数卷积神经网络的C++实现示例代码应用场景自动驾驶影像物体识别医疗影像诊断附:计算机视觉中几种经典的网络结构概念和原理为什么要使用卷积神经网络?在讲述原理之前,我们先来解释为什么我们在图像及视频等等领域的机器学习中要使用CNN。我们都知道,使用多
- Focal Loss
weixin_47868976
人工智能深度学习
FocalLoss通过动态降低易分类样本的损失权重,迫使模型集中学习难分类样本和少数类,从而有效解决样本不均衡问题。FocalLoss就像个严厉的老师,逼着模型别再“偷懒”总学简单题(多数类),而是多花力气死磕难题(少数类),这样考试(预测)时才能考好冷门知识点。FocalLoss详解——解决样本不均衡问题的利器1.核心思想FocalLoss由何恺明团队在2017年提出(论文《FocalLossf
- 【数据分析】二八模型 :基于Pandas的二八模型实战:精准识别高价值客户
云天徽上
数据挖掘分析数据分析pandas数据挖掘机器学习人工智能数据可视化
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- Verilog 中寄存器类型(reg)与线网类型(wire)的区别
千千道
FPGAfpga开发
目录一、前言二、基本概念与分类1.寄存器类型2.线网类型三、六大核心区别对比四、使用场景深度解析1.寄存器类型的典型应用2.线网类型的典型应用五、常见误区与注意事项1.寄存器≠物理寄存器2.未初始化值陷阱3.SystemVerilog的改进六、总结一、前言在Verilog硬件描述语言中,寄存器类型(RegisterTypes)和线网类型(NetTypes)是两类最基础且容易混淆的变量类型。理解二者
- 加载各类样本数据集
用大白话学习人工智能
python开发语言
#在sklearn中,一些常用的数据集,以及调用他的方法load_boston:包含503个波士顿房价的观察值,用于研究回归算法的优质数据集load_iris:包含150个鸢尾花尺寸的观察值,用于研究分类算法的优质数据集load_digits:包含1797个手写数字图片的观察值,用于研究图像分类算法的优质数据集1.加载csv文件#加载csv文件importpandasaspd#创建URLurl='
- echarts柱形图鼠标悬停显示数值_通过常用的柱形图,了解PowerBI的做图流程
活鸭肉
前面通过大量时间学习那些可能会让你感觉枯燥的数据处理、数据建模等内容,到这里我们开始涉足PowerBI中最让人心动的环节:数据可视化。第一篇先在PowerBI中制作常见的柱形图,简单来说,柱形图就是利用水平的柱子表示不同分类数据的大小,与之类似的是条形图,它就是竖的柱形图,或者说把柱形图顺时针转动90度就成了条形图,使用以及作图方式类似,因此本文介绍的柱形图的各项设置也适用于条形图,对它不再作单独
- **深度剖析与体验:钓鱼网站URL检测神器**
平奇群Derek
深度剖析与体验:钓鱼网站URL检测神器去发现同类优质开源项目:https://gitcode.com/互联网早已融入我们生活的每一个角落,然而随之而来的网络威胁也日渐增多,尤其是那些试图通过伪装网站进行信息盗取的钓鱼行为。在这个背景下,PhishingURLDetection——一个集数据科学与机器学习之力打造的反钓鱼利器应运而生。项目介绍:守护网络安全的第一道防线在当今数字化时代,个人信息安全成
- 自然语言处理NLP星空智能对话机器人系列:Facebook StarSpace框架案例数据加载
段智华
NLP星空智能对话机器人
自然语言处理NLP星空智能对话机器人系列:FacebookStarSpace框架案例数据加载目录FacebookStarSpace案例脚本FacebookStarSpace案例数据AG新闻主题分类数据集简介标签类别文件训练数据文件测试数据文件星空智能对话机器人系列博客FacebookStarSpace案例脚本先看一下FacebookStarSpace官方源码中提供的一个示例代码classifica
- 随机森林算法
编码雪人
机器学习算法随机森林机器学习
目录第一章分类回归树1.1分类回归树概述1.2模型训练1.2.1递归分裂1.2.2寻找最佳分裂第二章随机森林2.1随机森林概述2.2模型组件2.2.1Bootstrap2.2.2Bagging2.3模型训练2.4Sklearn随机森林模型参数2.4.1随机森林参数说明第三章工程实践3.1数据收集3.1.1数据集介绍3.1.2数据集的下载地址3.1.3加载数据3.2数据探索3.2.1数据概述3.3特
- Scala
超帅的好吧
笔记
Scala和Java及JVM关系图Javac.class字节码文件编译器Java运行Scala的SDK//1.Java的部分类库//2.特有类库//3.对Java的类库做了包装Scala运行.scala代码Importjava.io_//1可以使用Java的语法(部分)System.out.println(“ok”)//可以//2scala特有的语法和类库vart=(“tom”,100,12.4)
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio