图像搜索现实的一般过程:
提取图像特征值→对特征值进行处理→匹配特征值
图像的特征值有很多,基于颜色特征,纹理特征,形状特征等,下面是基于图像颜色直方图特征的图像搜索。
(参考文章:http://blog.csdn.net/jia20003/article/details/7771651#comments )
巴氏系数(Bhattacharyyacoefficient)算法
其中P, P’分别代表源与候选的图像直方图数据,对每个相同i的数据点乘积开平方以后相加
得出的结果即为图像相似度值(巴氏系数因子值),范围为0到1之间。为什么是到1之间,这是数学的问题,就不追究了。
一、 求源图像和要被搜索图像的直方图特征
二、 根据直方图特征,用巴氏系数算法求出源图像和要搜索图像的相似度
彩色图像的每个像素由red,green,blue三种组成,如何好地表示彩色图像的直方图更呢?一般有两种方式:
一种是用三维的直方图表示,这种方式简单明了,如hist[][],hist[0][]表示red的直方图,hist[1][]表示green的直方图,hist[2][]表示blue的直方图;如一个像素为(156,72,89),则hist[0][156]++; hist[0][72]++, hist[0][89]++;
另一种方式是降低灰度的级数,用一维直方图表示,如将256级的灰度降至16级,可用12位的int表示灰度值,前4位表示red,中间4们表示green,后面4位表示blue;一个像素为(156,72,89), r=156/16=9; g=72/16=4,b=89/16=5; index = r<<(2*4) | g<<4 | b; hist[index] ++;
/** * 求三维的灰度直方图 * @param srcPath * @return */ public static double[][] getHistgram(String srcPath) { BufferedImage img = ImageDigital.readImg(srcPath); return getHistogram(img); } /** * hist[0][]red的直方图,hist[1][]green的直方图,hist[2][]blue的直方图 * @param img 要获取直方图的图像 * @return 返回r,g,b的三维直方图 */ public static double[][] getHistogram(BufferedImage img) { int w = img.getWidth(); int h = img.getHeight(); double[][] hist = new double[3][256]; int r, g, b; int pix[] = new int[w*h]; pix = img.getRGB(0, 0, w, h, pix, 0, w); for(int i=0; i<w*h; i++) { r = pix[i]>>16 & 0xff; g = pix[i]>>8 & 0xff; b = pix[i] & 0xff; /*hr[r] ++; hg[g] ++; hb[b] ++;*/ hist[0][r] ++; hist[1][g] ++; hist[2][b] ++; } for(int j=0; j<256; j++) { for(int i=0; i<3; i++) { hist[i][j] = hist[i][j]/(w*h); //System.out.println(hist[i][j] + " "); } } return hist; } public double indentification(String srcPath, String destPath) { BufferedImage srcImg = ImageDigital.readImg(srcPath); BufferedImage destImg = ImageDigital.readImg(destPath); return indentification(srcImg, destImg); } public double indentification(BufferedImage srcImg, BufferedImage destImg) { double[][] histR = getHistogram(srcImg); double[][] histD = getHistogram(destImg); return indentification(histR, histD); } public static double indentification(double[][] histR, double[][] histD) { double p = (double) 0.0; for(int i=0; i<histR.length; i++) { for(int j=0; j<histR[0].length; j++) { p += Math.sqrt(histR[i][j]*histD[i][j]); } } return p/3; } /** * 用三维灰度直方图求图像的相似度 * @param n * @param str1 * @param str2 */ public static void histogramIditification(int n, String str1, String str2) { double p = 0; double[][] histR = GreyIdentification.getHistgram(str1); double[][] histD = null; for(int i=0; i<n; i++) { histD = GreyIdentification.getHistgram(str2 + (i+1) + ".jpg"); p = GreyIdentification.indentification(histR, histD); System.out.print((i+1) + "--" + p + " "); } }
/** * 求一维的灰度直方图 * @param srcPath * @return */ public static double[] getHistgram2(String srcPath) { BufferedImage img = ImageDigital.readImg(srcPath); return getHistogram2(img); } /** * 求一维的灰度直方图 * @param img * @return */ public static double[] getHistogram2(BufferedImage img) { int w = img.getWidth(); int h = img.getHeight(); int series = (int) Math.pow(2, GRAYBIT); //GRAYBIT=4;用12位的int表示灰度值,前4位表示red,中间4们表示green,后面4位表示blue int greyScope = 256/series; double[] hist = new double[series*series*series]; int r, g, b, index; int pix[] = new int[w*h]; pix = img.getRGB(0, 0, w, h, pix, 0, w); for(int i=0; i<w*h; i++) { r = pix[i]>>16 & 0xff; r = r/greyScope; g = pix[i]>>8 & 0xff; g = g/greyScope; b = pix[i] & 0xff; b = b/greyScope; index = r<<(2*GRAYBIT) | g<<GRAYBIT | b; hist[index] ++; } for(int i=0; i<hist.length; i++) { hist[i] = hist[i]/(w*h); //System.out.println(hist[i] + " "); } return hist; } public double indentification2(String srcPath, String destPath) { BufferedImage srcImg = ImageDigital.readImg(srcPath); BufferedImage destImg = ImageDigital.readImg(destPath); return indentification2(srcImg, destImg); } public double indentification2(BufferedImage srcImg, BufferedImage destImg) { double[] histR = getHistogram2(srcImg); double[] histD = getHistogram2(destImg); return indentification2(histR, histD); } public static double indentification2(double[] histR, double[] histD) { double p = (double) 0.0; for(int i=0; i<histR.length; i++) { p += Math.sqrt(histR[i]*histD[i]); } return p; } /** * 用一维直方图求图像的相似度 * @param n * @param str1 * @param str2 */ public static void histogramIditification2(int n, String str1, String str2) { double p = 0; double[] histR = GreyIdentification.getHistgram2(str1); double[] histD = null; for(int i=0; i<n; i++) { histD = GreyIdentification.getHistgram2(str2 + (i+1) + ".jpg"); p = GreyIdentification.indentification2(histR, histD); System.out.print((i+1) + "--" + p + " "); } }
源图像(要搜索的图像)
要被搜索的图像
搜索的结果,相似度从大到小