隐马尔科夫模型HMM

http://blog.csdn.net/pipisorry/article/details/46618991

马尔科夫过程

马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。

考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是 {S1,S2,S3,...SN}。我们现在用q1,q2,q3,…qn来表示系统在t=1,2,3,…n时刻下的状态。在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(SN)表示t=1时系统状态为SN的概率。

马尔科夫模型有两个假设:

1.      系统在时刻t的状态只与时刻t-1处的状态相关;(也称为无后效性)

2.      状态转移概率与时间无关;(也称为齐次性或时齐性)

第一条具体可以用如下公式表示:

P(qt=Sj|qt-1=Si,qt-2=Sk,…)= P(qt=Sj|qt-1=Si)

其中,t为大于1的任意数值,Sk为任意状态

第二个假设则可以用如下公式表示:

P(qt=Sj|qt-1=Si)= P(qk=Sj|qk-1=Si)

其中,k为任意时刻。

下图是一个马尔科夫过程的样例图:

隐马尔科夫模型HMM_第1张图片

可以把状态转移概率用矩阵A表示,矩阵的行列长度均为状态数目,aij表示P(Si|Si-1)。

隐马尔科夫过程

隐马尔可夫模型(Hidden Markov Model,HMM)是 统计 模型,它用来描述一个含有隐含未知参数的 马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析。是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型。

与马尔科夫相比,隐马尔科夫模型则是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下图所示:

隐马尔科夫模型HMM_第2张图片

此图是从别处找来的,可能符号与我之前描述马尔科夫时不同,相信大家也能理解。

该图分为上下两行,上面那行就是一个马尔科夫转移过程,下面这一行则是输出,即我们可以观察到的值,现在,我们将上面那行的马尔科夫转移过程中的状态称为隐藏状态,下面的观察到的值称为观察状态,观察状态的集合表示为 O={O1,O2,O3,…OM}。

相应的,隐马尔科夫也比马尔科夫多了一个假设,即输出仅与当前状态有关,可以用如下公式表示:

P(O1,O2,…,Ot|S1,S2,…,St)=P(O1|S1)*P(O2|S2)*...*P(Ot|St)

其中,O1,O2,…,Ot为从时刻1到时刻t的观测状态序列,S1,S2,…,St则为隐藏状态序列。

另外,该假设又称为输出独立性假设。

隐马模型基本要素及基本三问

举个例子

举个常见的例子来引出下文,同时方便大家理解!比如我在不同天气状态下去做一些事情的概率不同,天气状态集合为{下雨,阴天,晴天},事情集合为{宅着,自习,游玩}。假如我们已经有了转移概率和输出概率,即P(天气A|天气B)和P(事情a|天气A)的概率都已知道,那么则有几个问题要问(注意,假设一天我那几件事情中的一件),

1.假如一周内的天气变化是 下雨->晴天->阴天->下雨->阴天->晴天->阴天,那么我这一周 自习->宅着->游玩->自习->游玩->宅着->自习的概率是多大?

2.假如我这一周做事序列是 自习->宅着->游玩->自习->游玩->宅着->自习,不知道天气状态的情况下这个做事序列的概率是多大?

3.假如一周内的天气变化是 下雨->晴天->阴天->下雨->阴天->晴天->阴天,那我们这一周最有可能的做事序列是什么?

4.假如我这一周做事序列是 自习->宅着->游玩->自习->游玩->宅着->自习,那么这一周的天气变化序列最有可能是什么?

HMM的三个基本要素

综上所述,我们可以得到隐马尔科夫的基本要素,即一个五元组{S,N,A,B,PI};

S:隐藏状态集合;

N:观察状态集合;

A:隐藏状态间的转移概率矩阵;

B:输出矩阵(即隐藏状态到输出状态的概率);

PI:初始概率分布(隐藏状态的初始概率分布);

其中,A,B,PI称为隐马尔科夫的参数,用X表示。

由上述问题可以引出隐马尔科夫的三个基本问题的其中两个。

HMM的三个基本问题

1.      给定模型(五元组),求某个观察序列O的概率(样例问题2)。

2.      给定模型和观察序列O,求可能性最大的隐藏状态序列(样例问题4)。

3.      对于给定的观察序列O,调整HMM的参数,使观察序列出现的概率最大。


基本算法

针对以下三个问题,人们提出了相应的算法
1 评估问题: 前向算法
2 解码问题: Viterbi算法
3 学习问题: Baum-Welch算法(向前向后算法)
前向算法

对于第一个基本问题,计算公式为:


即对于观察序列O,我们需要找出所有可能的隐藏状态序列S,计算出在给定模型下S输出为O的概率(就是样例问题一啊),然后计算概率之和。

直观上看,假如序列O的长度为T,模型的隐藏状态集合大小为N,那么一共有NT个可能的隐藏状态序列,计算复杂度极高O(NT),暴力算法太慢了。

解决方案就是动态规划(Dynamic Programming)。

假设观察序列为O1,O2,O3,….,Ot. 在时刻i(1<i<=t)时,定义C为产生序列O1,O2,…,Oi且Si=Sk的概率:


其中,Sk为任意一个隐藏状态值。

则C(i+1,Or)的计算公式为:


其中,Sr为任意一个隐藏状态值。A为转移概率。B为隐藏状态到观察状态的概率。为了便于理解,还是看图:

隐马尔科夫模型HMM_第3张图片

C(3,下雨)考虑了t=1和t=2的所有组合情况,同时也是C(4,下雨|阴天|晴天)的子问题。C(3,阴天)和C(3,晴天)也是如此计算,而C(i+1,Sr)计算公式则可以表示成:

隐马尔科夫模型HMM_第4张图片

由图知:C(4,阴天)=[C(3,下雨)*A(下雨,阴天)+C(3,阴天)*A(阴天,阴天)+C(3,晴天)*A(晴天,阴天)]*B(阴天,自习)。

通过图片,大家应该能直观的理解该算法了,该算法又称为前向算法,那还有后向算法?是的,后向算法就是这个算法倒过来嘛,也是动态规划,这里就不赘述了,有兴趣的看参考文献。另外,这里没有讲解如何初始化概率,也可以去参考文献里查证。

维特比算法

现在,HMM的第一个基本问题解决了,下面开始解决第二个问题,第二个问题又称为解码问题,同样的,暴力算法是计算所有可能性的概率,然后找出拥有最大概率值的隐藏状态序列。与问题一的暴力解决方案类似,复杂度为O(NT)。

那应该用什么方案呢?

毫无疑问,还是动态规划啊!

假设观察序列为O1,O2,O3,….,Ot. 在时刻i(1<i<=t)时,定义D为观察O1,O2,…,Oi且Si=Sk时产生该观察序列的最大概率:

其中,S1,S2,….S(i-1),在此时也已经可以得到,因为它们是子问题啊。


童鞋们有么有看到该公式和上面的前向算法的差异?一个是对子问题求和,一个是对子问题求最大值啊。

当然,对于本问题来说,因为需要求出的是使得观察序列概率最大的隐藏状态的序列,而不是最大概率,所以,在算法计算过程中,还需要记录前一个隐藏状态的值。比如C(4,阴天)的最大值是有子问题C(3,下雨)得来的,那么需要在C(4,阴天)这个节点记录前置状态为下雨。

由于本算法和前向算法只是计算公式的不同,所以参考图是一样的,本算法还可以参考上面算法的图;同样的,解释中没有提到初始化,可以去看参考文献。

本算法又称为维特比算法,维特比是人名,这个老先生在上世纪70年代发明的该算法,但在现代人看来没什么神秘,可见问题在解决后可能会很简单,所以不管是生活上还是学术上都不要畏惧,勇于战而后知战之易矣。

相信理解了前向算法和维特比算法后,大家对样例问题2和样例问题4都能解决了吧,对于样例问题3,其实跟维特比算法差不多,只不过是在观察状态的空间中寻找最优解。

对于基本问题三,本人还没有理解的太透彻,这里就不献丑了。

隐马尔科夫过程的应用

HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个方面。下面举两个例子说明他的应用,一个是输入法的整句解码,一个是语音识别。有图为证:

隐马尔科夫模型HMM_第5张图片

输入法把拼音看做是观察状态,需要得到的汉字为隐藏状态,这样,输入法的整句解码就变成了维特比解码,其转移概率即是二元语言模型,其输出概率即是多音字对应不同拼音的概率。

将上图中的拼音换成语音,就成了语音识别问题,转移概率仍然是二元语言模型,其输出概率则是语音模型,即语音和汉字的对应模型。

from:http://blog.csdn.net/pipisorry/article/details/46618991

ref:隐马尔科夫模型(Hidden Markov Models)介绍

隐马尔科夫模型(HMM)及其扩展

隐马尔科夫模型

百度百科-隐马尔可夫模型


你可能感兴趣的:(hmm,隐马尔科夫,马尔科夫)