- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- Open3D 最小二乘拟合二维直线(拉格朗日乘子法)
点云侠
python点云处理平面线性代数算法开发语言计算机视觉python
目录一、算法原理二、代码实现三、结果展示Open3D最小二乘拟合二维直线(拉格朗日乘子法)由CSDN点云侠原创。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。一、算法原理 平面直线的表达式为:y=kx
- 机器学习_12_梯度下降法、拉格朗日、KKT
少云清
机器学习机器学习人工智能拉格朗日梯度下降KKT
文章目录1梯度下降法1.1导数、梯度1.2梯度下降法1.3梯度下降法的优化思想1.4梯度下降法的调优策略1.5BGD、SGD、MBGD1.5.1BGD、SGD、MBGD的区别2有约束的最优化问题3拉格朗日乘子法3.1拉格朗日乘子法理解3.2对偶问题4KKT条件4.1KKT条件理解4.2KKT公式理解4.3KKT条件总结5高中距离知识回顾1梯度下降法1.1导数、梯度导数:一个函数在某一点的导数描述了
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 机器学习核心算法
llovew.
机器学习机器学习逻辑回归人工智能支持向量机决策树
目录逻辑回归算法原理决策树决策树算法概述树的组成决策树的训练与测试切分特征衡量标准--熵信息增益决策树构造实例连续值问题解决预剪枝方法分类与回归问题解决决策树解决分类问题步骤决策树解决回归问题步骤决策树代码实例集成算法Bagging模型使用Bagging模型的示例代码Boosting模型AdaBoostStacking模型支持向量机决策边界距离的计算数据标签定义优化的目标目标函数拉格朗日乘子法SV
- 支持向量机(公式推导+举例应用)
Nie同学
机器学习支持向量机算法机器学习
文章目录引言间隔与支持向量机对偶问题(拉格朗日乘子法)SMO算法核函数软间隔与正则化软间隔正则化(罚函数法)模型的稀疏性结论实验分析引言在机器学习领域,支持向量机(SupportVectorMachine,简称SVM)是一种强大而广泛应用的监督学习算法。其独特的优势在于在高维空间中进行准确分类,并在处理复杂数据集时表现出色。支持向量机的核心思想是在数据点间找到一个最优的超平面,以最大化不同类别之间
- 运筹说 第99期 | 非线性规划—最优性条件
运筹说
人工智能算法机器学习
通过上期学习,大家已经了解了非线性规划中无约束极值问题及其求解方法。本期小编将为大家介绍最优性条件,包括可行下降方向、库恩-塔克条件等内容。1可行下降方向起约束作用假定X(0)是上述问题的一个可行解,满足所有约束。对某约束条件gj(X)≥0来说,满足它有两种情况:(1)gj(X)>0:此时X(0)在可行域内部,不在该约束条件形成的可行域边界上,则称该约束为X(0)点的不起作用约束(无效约束)。(2
- 线性判别分析LDA((公式推导+举例应用))
Nie同学
机器学习机器学习
文章目录引言模型表达式拉格朗日乘子法阈值分类器结论实验分析引言线性判别分析(LinearDiscriminantAnalysis,简称LDA)是一种经典的监督学习算法,其主要目标是通过在降维的同时最大化类别之间的差异,为分类问题提供有效的数据表征。LDA不同于一些无监督降维方法,如主成分分析(PCA),它充分利用了类别信息,通过寻找最佳投影方向,使得不同类别的样本在降维后的空间中有最大的类间距离,
- 【最优化方法】无约束优化问题(函数梯度、下降方向、最优性)
撕得失败的标签
最优化方法线性代数最优化方法下降方向无约束优化问题最优性条件
文章目录下降方向下降方向与梯度关系例题偏导数方向导数梯度(导数)下降方向最优性条件一阶必要条件二阶必要条件二阶充分条件无约束凸规划的最优性条件我们把一元方程推广到nnn维无约束极小化问题,得到解无约束优化问题minx∈Rnf(x)\min_{x\in\mathbf{R}^n}f(x)x∈Rnminf(x)下降方向设f(x)f(x)f(x)为定义在空间Rn\mathbf{R}^nRn上的连续函数,
- Open3D 最小二乘拟合平面——拉格朗日乘子法
点云侠
python点云处理平面numpy开发语言算法计算机视觉3d
目录一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接Open3D最小二乘拟合平面——拉格朗日乘子法。爬虫自重。一、算法原理 设拟合出的平面方程为:ax+by+
- 机器学习——支持向量机
TXQIHYJ
机器学习支持向量机人工智能
目录前言支持向量机的背景理论知识线性可分支持向量机最大间隔超平面最大化间隔的计算对偶问题等式约束不等式约束的KKT条件拉格朗日乘子法:软间隔与正则化损失函数具体实现垃圾邮件分类(SVM)数据集准备代码实现运行结果总结前言支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧
- SVM原理理解
BKXjilu
支持向量机机器学习算法
目录概念推导:共识:距离两个点集距离最大的分类直线的泛化能力更好,更能适应复杂数据。怎么能让margin最大?最大化margin公式:求解最大margin值:拉格朗日乘子法:为什么公式中出现求和符号?SVM模型:求解拉格朗日乘子:如何求解?1.计算实例:2.求解算法--SMO求解问题:工作原理:为什么每次要选择两个变量来更新,而不是一个变量呢?代码:小结:学习资料:猫都能看懂的SVM【从概念理解、
- 一般信道容量的计算方法
FakeOccupational
其他latexhtmlpycharm
由拉格朗日乘子法对L=I(X;Y)−λ∑ipi对pi求导可得公式∑j=1mp(yj/xi)log(p(yj/xi)p(yi))=log2e+λ引入C:∑j=1mp(yj/xi)log(p(yj/xi)p(yi))=C分离定值:∑j=1mp(yj/xi)log(p(yj/xi))=C+∑j=1mp(yj/xi)log(p(yi))∑j=1mp(yj/xi)=1,∑j=1mp(yj/xi)log(p(
- 机器学习之支持向量机(SVM)原理详解、公式推导(手推)、面试问题、简单实例(sklearn调包)
铖铖的花嫁
机器学习sklearn
目录1.SVM介绍1.1.思路1.2.特性2.前置知识2.1.超平面2.2.拉格朗日乘子法2.3.对偶问题3.原理推导3.1.公式推导3.2.求解3.2.1.转化对偶问题3.2.2.SMO算法4.核函数与软间隔4.1.核函数4.2.软间隔5.几个注意点(面试问题)6.代码详解6.1.sklearnSVM7.代码实现(可直接食用)1.SVM介绍1.1.思路我们先思考,我们为什么需要SVM?简单的逻辑
- SVM —— 理论推导
写进メ诗的结尾。
机器学习支持向量机算法机器学习
SVM支持向量线性可分最大间隔超平面最大间隔超平面的推导支持向量分类间隔的推导最优化问题对偶问题拉格朗日乘子法强对偶性SVM优化软间隔解决问题优化目标及求解核函数线性不可分核函数的作用常见核函数SVM算法优缺点支持向量机(SupportVectorMachine,SVM)是一种常用的监督学习算法,主要用于分类和回归任务。它的核心思想是找到一个最优的超平面或者曲面,将不同类别的样本点分开。在二分类问
- 机器学习——支持向量机
林梓烯
支持向量机算法机器学习
目录一、基于最大间隔分隔数据二、寻找最大间隔1.最大间隔2.拉格朗日乘子法3.对偶问题三、SMO高效优化算法四、软间隔五、SMO算法实现1.简化版SMO算法2.完整版SMO算法3.可视化决策结果六、核函数1.线性不可分——高维可分2.核函数七、垃圾邮件分类八、总结上次实验使用的logistic回归是一种线性分类模型,其基本思想是根据数据集训练出一个线性回归模型,再使用sigmoid函数将输出映射到
- matlab 最小二乘拟合平面(拉格朗日乘子法)
点云侠
matlab点云工具箱matlab平面算法线性代数开发语言计算机视觉
目录一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。博客长期更新,爬虫自重。一、算法原理 设拟合出的平面方程为:ax+by
- 人工智能_机器学习055_拉格朗日乘子法_拉格朗日乘数法的原理介绍_流程详解---人工智能工作笔记0095
脑瓜凉
人工智能机器学习拉格朗日乘数法拉格朗日乘数法原理拉格朗日乘数法公式
上一节我们已经演示了把SVM支持向量机的分割线,画出来,并且,我们也推导了SVM支持向量机的公式,但是支持向量机的公式,是带有条件的对吧,带有条件就算起来比较麻烦可以看到现在我们要可以用,拉格朗日乘数法,将有等式约束条件的优化问题转换为无约束优化问题,把有条件转换为无条件对吧,但是我们的SVM支持向量机的目标函数中,的条件是不等式条件对吧,不是等式,所以更复杂一些.可以看到,下面这个就是minf(
- 【动手学深度学习】(六)权重衰退
释怀°Believe
#动手学深度学习深度学习人工智能
文章目录一、理论知识二、代码实现2.1从零开始实现2.2简洁实现【相关总结】主要解决过拟合一、理论知识1、使用均方范数作为硬性限制(不常用)通过限制参数值的选择范围来控制模型容量通常不限制偏移b小的意味着更强的正则项使用均方范数作为柔性限制对于每个都可以找到使得之前的目标函数等价于下面的:可以通过拉格朗日乘子来证明超参数控制了正则项的重要程度参数更新法则总结:权重衰退通过L2正则项使得模型参数不会
- 大数据HCIE成神之路之数学(4)——最优化实验
邵奈一
HCIE之路数据挖掘机器学习大数据HCIE机器学习
最优化实验1.1最小二乘法实现1.1.1算法介绍1.1.2代码实现1.2梯度下降法实现1.2.1算法介绍1.2.2代码实现1.3拉格朗日乘子法1.3.1实验1.3.2实验操作步骤1.1最小二乘法实现1.1.1算法介绍最小二乘法(LeastSquareMethod),做为分类回归算法的基础,有着悠久的历史。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的参数,并使得
- 支持向量机原理(Support Vector Machine)学习笔记
奶糖派大白兔
机器学习支持向量机人工智能
支持向量机原理(SupportVectorMachine)学习笔记前言1.SVM算法原理2.硬间隔(Hardmargin)SVM2.1拉格朗日乘子法2.2KKT条件2.3对偶问题3.软间隔(Softmargin)SVM4.核函数5.SMO算法α\alphaα的更新bbb的更新优化变量的选择参考资料前言支持向量机(SVM)是以监督学习训练出来的二元分类模型,目的是将带有未知标签的数据进行合理分类。1
- 最优化理论
HI_Forrest
学习笔记c++
最优化理论资料一optimalcondition最优性条件概念二一维搜索逐次下降法iterativedecent单峰函数二分法dichotomoussearch三资料B站最优化理论与算法上交最优化方法一目标函数:需要优化的函数决策变量,可以调整变化的量约束集,决策变量的可行集无约束优化,决策变量任意值约束优化,决策变量范围有限制非线性规划:代价函数或者约束是非线性的。其他规划问题:整数规划inte
- 近期问题笔记20231116
快把我骂醒
笔记
DMA的洛伦兹约束的来源多拉格朗日乘子的拉格朗日对偶问题的次梯度搜索鲁棒优化,onlystatisticalCSIoftheusers-to-RISchannelsH2,k\mathbf{H}_{2,k}H2,kisavailable期望符号的去除,阅读这篇论文C.-K.Wen,S.Jin,andK.-K.Wong,“Onthesum-rateofmultiuserMIMOuplinkchanne
- 基于改进二进制粒子群算法的电力系统机组组合——复现
神经网络与数学建模
电网优化智能算法粒子群优化调度机组组合电力系统
目录文章摘要:研究背景:二进制粒子群算法:代码运行效果:本文代码分享:文章摘要:提出了1种改进的BS0(二进制粒子群)方法求解机组组合问题。首先,利用优先顺序法确定初始的机组组合,根据这个结果,确定优化窗口的范围,在此范围内利用BPSO进行求解。在每次迭代过程中,通过启发式的调整策路使每代中的粒子都满足约束条件。在经济负荷分配问题上,采用经典的拉格朗日乘子法结合二分法进行求解,大大提高了求解效率。
- 最优化基础(五)
OopspoO
Read_NotesMATLABOptimization优化
最优化基础(五)1无约束问题的最优性条件引入下列记号:g(x)=∇f(x),gk=∇f(xk),G(x)=∇2f(x),Gk=∇2f(xk)g(x)=\nablaf(x),\g_k=\nablaf(x_k),\G(x)=\nabla^2f(x),\G_k=\nabla^2f(x_k)g(x)=∇f(x),gk=∇f(xk),G(x)=∇2f(x),Gk=∇2f(xk)一阶必要条件:设f(x)f(x
- 机器学习——支持向量机
Moonee_
机器学习机器学习
机器学习——支持向量机一、定义二、基本概念1.线性可分2.分割超平面3.超平面4.点相对于分割面的间隔5.间隔6.支持向量三、寻找最大间隔1.分隔超平面2.如何决定最好的参数3.凸优化4.拉格朗日对偶①拉格朗日乘子法与对偶问题②KKT条件四、核函数五、正则化与软间隔六、SMO算法1.优化目标函数和约束条件2.Platt的SMO算法3.简化版SMO①数据集准备②辅助函数③对支持向量画圈4.完整版SM
- 拉格朗日乘子法
River Chandler
分析学基础与进阶人工智能算法机器学习数学建模抽象代数
拉格朗日乘子法约束条件函数求极值的必要条件:引入拉格朗日函数:exampleimportgeatpyaseaimportnumpyasnp@ea.Problem.singledefevalVars(Vars):x1=Vars[0]x2=Vars[1]f=(x1)**2*\(x2)**3CV=np.array([abs(x1+2*x2-3)-1e-5,])returnf,CVproblem=ea.P
- 机器学习 —— 支持向量机
DreamWendy
人工智能机器学习支持向量机机器学习人工智能
目录一、基于最大间隔分隔数据1.1线性模型1.2超平面1.3支持向量1.4支持向量机二、寻找最大间隔三、拉格朗日乘子法与对偶问题3.1对偶问题:等式约束3.2不等式约束的KKT条件3.3最大间隔问题的拉格朗日乘法四、SMO算法4.1小规模数据集4.2应用简化版SMO算法处理小规模数据集4.3、利用完整PlattSMO算法加速优化五、示例:基于SVM的手写数字识别5.1数据集5.2算法实现六、实验总
- 机器学习-线性模型
Hong0207
机器学习人工智能python
线性模型线性回归正则化Regularization对数线性回归log-linearregression对数几率回归数学基础:极大似然估计MLE数学基础:贝叶斯公式Bayes线性判别分析(LinearDiscriminantAnalysisLDA)数学基础:拉格朗日乘子法数学基础:广义特征值数学基础:广义瑞利商多分类问题类别不平衡问题class-imbalance基本形式:f(x)=wTx+bf(x
- 最优化基础知识总结(1)
风声holy
高等数学笔记高等数学最优化理论
最优化基础知识总结(1)最速下降方向:负梯度方向梯度:沿各个坐标轴方向的偏导数组成的函数向量。方向导数:梯度·某一方向的单位向量。黑塞矩阵:二阶偏导数,按列排列。第一列,为f1(X)f_1(X)f1(X)的偏导数;雅各布矩阵:向量值函数,一节偏导数,按行排列。第一行,为f⃗(X)\vecf(X)f(X)的第一个分量的梯度。最优性条件:X⋆X^⋆X⋆驻点,∇f(X⋆)=0∇f(X^⋆)=0∇f(X⋆
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置