- Springboot+vue.js+协同过滤推荐+余弦相似度算法实现新闻推荐系统
计算机程序优异哥
针对海量的新闻资讯数据,如何快速的根据用户的检索需要,完成符合用户阅读需求的新闻资讯推荐?本篇文章主要采用余弦相似度及基于用户协同过滤算法实现新闻推荐,通过余弦相似度算法完成针对不同新闻数据之间的相似性计算,实现分类标签。通过协同过滤算法发现具备相似阅读习惯的用户,展开个性化推荐。本次新闻推荐系统:主要包含技术:springboot,mybatis,mysql,javascript,vue.js,
- 基于用户的协同过滤以及ALS的混合召回算法
山水阳泉曲
算法机器学习人工智能矩阵python推荐算法线性代数
文章目录需求基于用户的协同过滤基本步骤相似度计算代码示例(使用余弦相似度)基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替最小二乘(AlternatingLeastSquares,ALS)结合起来,设计一个混合推荐系统。这种系统可以利用
- 余弦相似度算法和IntelliScraper
python人工智能
场景当时,我说要开发一个HSipder,开发完毕的时候,我发现不太智能,通过正则表达式拿过来的相似数据实际上也不太ok,但是后面我在接触机器学习的时候听闻了余弦相似度算法,当时用他爬了一些网页,结果是很ok的,于是我把HSipder项目拆了拆加入了余弦算法,我发现准确度上去了一个维度。很Nice,随机我将其发布到pypi库,并且开源,命名为IntelliScraper,意思是智能爬,也有人工智能的
- NLP_Bag-Of-Words(词袋模型)
you_are_my_sunshine*
NLP自然语言处理人工智能
文章目录词袋模型用词袋模型计算文本相似度1.构建实验语料库2.给句子分词3.创建词汇表4.生成词袋表示5.计算余弦相似度6.可视化余弦相似度词袋模型小结词袋模型词袋模型是一种简单的文本表示方法,也是自然语言处理的一个经典模型。它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次,如下图所示用词袋模型计算文本相似度1.构建实验语料库#构建一个数据集corpus=["我
- 数据挖掘——考试复习
hzx99
考试复习数据挖掘考试复习
数据挖掘——考试复习考点填空欧几里得距离余弦相似度简单匹配系数Jaccard系数数据集的ClassficationError数据集的Gini值召回率和精度问答支持向量机的“最大边缘”原理软边缘支持向量机的基本工作原理非线性支持向量机的基本工作原理计算朴素贝叶斯分类ID3决策树、计算数据集的熵、计算划分的期望信息、信息增益计算欧式距离、KNN分类给定事务数据集、求频繁K项集,求指定的关联规则的支持度
- 推荐系统算法实践 - P2 推荐系统的召回算法
左心Chris
4协同过滤-基于行为协同过滤算法协同过滤算法是什么?基于跟你类似的用户喜欢的东西,你也会喜欢基于跟你喜欢的东西类似的物品,你也会喜欢怎么体现类似的这个情景?同现相似度,欧几里得距离,皮尔逊相关系数,余弦相似度皮尔逊相关系数大小跟紧密程度的关系?皮尔逊相关系数[-1,1],绝对值越接近于1,越线性相关什么时候使用向量乘法,什么时候选择余弦相似度?如果向量的长度本身对相似有影响,建议使用内积,比如评分
- 我用Java写了一个协调过滤算法案例
还得是你大哥
java服务端java算法开发语言
协调过滤算法(CollaborativeFiltering)是一种基于用户行为数据的推荐算法。这里给出一个简单的Java实现案例,使用余弦相似度计算物品之间的相似度,并根据相似度为用户推荐物品。importjava.util.*;publicclassCollaborativeFiltering{publicstaticvoidmain(String[]args){//用户评分数据Map>user
- 【ChatGPT】文本向量化与余弦相似度:揭开文本处理的神秘面纱
魔道不误砍柴功
AI大模型chatgpt
1、引言在这个数字化的时代,我们每天都会面对大量的文本信息,从社交媒体到新闻报道,文本无处不在。但是,计算机要如何理解和处理这些文字呢?本文将为大家揭开其中的一些奥秘,详细解释文本向量化的概念,以及通过余弦相似度如何计算文本之间的相似度。说白了,就是把文字、图片或其他东西变成一串数字,然后通过计算这些数字的距离来找相似的东西。这样做有啥好处呢?能够让搜索更快、更准确,而且在很多地方都能派上用场。2
- DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)
毕设阿力
算法
DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的
- 【Python3】计算两个字符串的相似度
言之。
python
在Python中,你可以使用不同的算法和库来计算两个字符串的相似度。这里介绍两种常用的方法:编辑距离和余弦相似度。1.编辑距离(EditDistance):编辑距离是衡量两个字符串之间的差异程度的一种度量方式。在Python中,可以使用编辑距离算法来计算两个字符串之间的相似度。可以使用python-Levenshtein库来实现。首先,你需要安装python-Levenshtein库:pipins
- 文本相似度计算
Logan_addoil
python大数据学习之旅python
相似度度量:计算个体间相似度相似度值越小,距离越大,相似度越大,距离越小余弦相似度:一个向量空间中两个向量夹角的余弦值作为衡量两个个体之间差异的大小余弦值接近1,夹角趋于0,表明两个向量越相似例如:文本相似度计算1.找出两篇文章的关键词2.每篇文章各取出若干关键词,合并成一个集合,计算每篇文章对于这个词的词频3.生成两篇文章各自的词频向量4.计算两个向量的余弦相似度,值越大就表示越相似import
- 余弦距离和余弦相似度的区别
weixin_44040169
算法机器学习人工智能
余弦相似度,就是计算两个向量间的夹角的余弦值:cosθ,取值范围[-1,1]。值越大,相似度越高余弦距离就是用1减去这个获得的余弦相似度:1-cosθ,取值范围[0,2]。值越大,距离越远。余弦距离和欧氏距离一样都可以用来衡量向量距离:都是值越大,距离越远。
- 推荐系统算法 协同过滤算法详解(一)杰卡德相似度和余弦相似度使用、缺陷
A乐神
算法算法
目录前言协同过滤算法(简称CF)杰卡德相似度公式:示例缺陷余弦相似度算法:例子缺陷以及和皮尔森系数对比总结前言理解吧同胞们,实在是没办发把wps公式复制到文章上,只能截图了,我服了!!!协同过滤算法(简称CF)在早期,协同过滤几乎等同于推荐系统。主要的功能是预测和推荐。协同过滤推荐算法分为两类,分别是:(英文userCF)基于用户的协同过滤算法(相似的用户可能喜欢相同物品);这个一般适合推荐新闻和
- OpenCV书签 #余弦相似度的原理与相似图片/相似文件搜索实验
有时有味
OpenCV算法Pythonopencv余弦相似度相似文件搜索图搜索算法以图搜图pythonnumpy
1.介绍余弦相似度(CosineSimilarity),又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度仅仅与向量的指向方向相关,与向量的长度无关,它将向量根据坐标值绘制到向量空间中,如最常见的二维空间。因此,万物皆向量,我们可以使用余弦相似度来进行相似图片查找、相似文件搜索等工作。两个向量间的余弦值可以通过使用欧几里得点积公式求出:给定两个属性向量,A和B,其余弦相
- 神经网络中的损失函数(下)——分类任务
liuzibujian
神经网络分类人工智能机器学习损失函数
神经网络中的损失函数前言分类任务中的损失函数交叉熵最大似然信息论信息量信息熵最短平均编码长度交叉熵KL散度余弦相似度损失函数总结前言上文主要介绍了回归任务中常用的几个损失函数,本文则主要介绍分类任务中的损失函数。分类任务中的损失函数为了与回归任务的损失函数形式相统一,此处仅考虑某一条数据的损失函数。在分类任务中,假设一共有nnn个类别。该数据的真实值YYY一般用独热编码(只有某一位为1,其余都是0
- 机器学习 - 余弦相似度算法和IntelliScraper
北堂飘霜
机器学习算法人工智能
场景当时,我说要开发一个HSipder,开发完毕的时候,我发现不太智能,通过正则表达式拿过来的相似数据实际上也不太ok,但是后面我在接触机器学习的时候听闻了余弦相似度算法,当时用他爬了一些网页,结果是很ok的,于是我把HSipder项目拆了拆加入了余弦算法,我发现准确度上去了一个维度。很Nice,随机我将其发布到pypi库,并且开源,命名为IntelliScraper,意思是智能爬,也有人工智能的
- NLP-文本处理:实体消歧/词义消歧(Entity Disambiguiation / Word Sense Disambiguation)
u013250861
#NLP基础/句法语义分析
一、简单方法1、提前构建好实体库(描述库)2、将文本转为向量将含有待消歧实体的文本句子AAA(实体前后各取10~20个单词),实体库中该实体的各种描述的句子(A1,A2,...A_1,A_2,...A1,A2,...)都转为向量,然后通过余弦相似度计算cos(A,A1),cos(A,A2),...cos(A,A_1),cos(A,A_2),...cos(A,A1),cos(A,A2),...,最后
- 余弦相似度的计算以及公式
爱打网球的小哥哥一枚吖
信息检索信息检索
公式:思想:余弦相似度的思想是通过计算两个向量之间的余弦值来衡量它们的相似程度。如果两个向量之间的夹角越小,它们的余弦值就越接近1,也就意味着它们越相似。而如果它们的夹角越大,余弦值就越接近0,也就意味着它们越不相似。因此,余弦相似度常用于文本分类、推荐系统、图像处理等领域,以评估两个向量之间的相似程度。计算:引用:余弦相似度计算_计算两个向量的余弦相似度-CSDN博客
- LangChain 65 深入理解LangChain 表达式语言28 余弦相似度Router Moderation LangChain Expression Language (LCEL)
AI架构师易筋
LLM-LargeLanguageModelslangchainchatgpt人工智能python
LangChain系列文章LangChain50深入理解LangChain表达式语言十三自定义pipeline函数LangChainExpressionLanguage(LCEL)LangChain51深入理解LangChain表达式语言十四自动修复配置RunnableConfigLangChainExpressionLanguage(LCEL)LangChain52深入理解LangChain表达
- 基于内容推荐(TF-IDF)的新闻博客系统-期末项目/毕业设计
Please Sit Down
项目毕业设计Javajava
技术栈JavaEEEclipseMysql-5.6SpringSpringMVCMybatisJavaScriptEasyUITF-IDF算法推荐算法基于内容推荐算法:TF-IDF基本原理:根据用户的浏览行为,获得用户的兴趣偏好度,为用户推荐跟他的兴趣偏好相似的内容,采用词频-逆文档词频来提取文章关键字,根据关键词词频向量计算相似度(余弦相似度)来进行内容推荐。(1)方法描述在新闻领域,推荐系统将
- 机器学习 -- 余弦相似度
北堂飘霜
pythonAI机器学习人工智能
场景我有一个页面如下(随便找的):我的需求是拿到所有回答的链接,再或者我在找房子网上,爬到所有的房产信息,我们并不想做过多的处理,我只要告诉程序,请帮我爬一个类似xxx相似度为0.5的就可以了,然后我自会写一小段代码去给数据清洗,这就免去了每次不同网站写不同的一套脚本的痛苦。这里就用到了余弦相似度。余弦相似度余弦相似度,又称为余弦相似性,是通过测量两个向量的夹角的余弦值来度量它们之间的相似性。两个
- 【机器学习:余弦相似度 】机器学习中余弦相似度的理解和应用
jcfszxc
机器学习知识专栏机器学习人工智能
【机器学习:余弦相似度】机器学习中余弦相似度的理解和应用定义余弦距离角距离和相似度L2L_2L2归一化欧几里得距离Otsuka–Ochiai系数属性余弦相似度的三角不等式软余弦测量应用示例扩展GPT图像示例在数据分析领域,余弦相似度用于度量内积空间中两个非零向量之间的相似性。它等于这两个向量间夹角的余弦值,即向量点积除以它们长度的乘积。因此,余弦相似度与向量的大小无关,仅与它们的夹角有关。余弦相似
- 词向量技术 | SkipGram词向量模型的训练以及词的余弦相似度计算
源于花海
自然语言处理人工智能自然语言处理nlp
Hi,大家好啊!词向量是表示自然语言里单词的一种方法,词向量技术在自然语言处理中也有着举足轻重的作用,通过这种方法,实现把自然语言计算转换为向量计算。一、词向量训练1.词向量计算简介在自然语言处理任务中,词向量是表示自然语言里单词的一种方法,即把每个词都表示为一个N维空间内的点,即一个高维空间内的向量。通过这种方法,实现把自然语言计算转换为向量计算。如图1所示的词向量计算任务中,先把每个词(如qu
- 余弦相似度匹配
步入繁华
今天的产品涉及到一个相似度匹配算法,上网查了这类算法很多。跟研发讨论,研发推荐使用余弦值相似度算法。余弦值相似度算法是个什么算法?余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。余弦值越接近1,也就是两个向量越相似,这就叫"余弦相似性",余弦值越接近0,也就是两个向量越不相似,也就是这两个字符串越不相似。是不是更加云里雾里了?没关系,我数学这么差的
- 数据挖掘中的数据属性特点、描述性统计度量与相似度计算
轩Scott
数据挖掘人工智能
目录1.引言2.数据挖掘中的数据属性2.1数值属性2.2标称属性2.3有序属性2.4无序属性3.描述性统计度量3.1中心趋势度量3.2离散程度度量3.3分布形状度量4.相似度计算4.1欧氏距离4.2余弦相似度4.3Jaccard5.数据挖掘中的案例应用5.1电商推荐系统5.2医疗诊断5.3金融风险预测6.挑战与未来发展7.结论1.引言数据挖掘是通过发现隐藏在大量数据背后的模式、关系和趋势,为决策提
- 2023下半年的总结
从零开始的奋豆
机器学习人工智能scikit-learn目标检测深度学习
我从八月下旬开始写的,到现在差不多有半年了,总结一下吧!1.计算机视觉在计算机视觉方面,想必两个有名的深度学习框架(TensorFlow和PyTorch)大家都很清楚吧,以及OpenCV库。对于人脸识别,可以采用了基于深度学习的特征提取方法,通过训练卷积神经网络(CNN)来提取人脸特征,并使用余弦相似度进行特征匹配,实现人脸的快速识别。在物体跟踪方面,可以采用了基于目标检测的方法,通过训练YOLO
- 余弦相似度算法
xwhking
算法
余弦相似度算法是什么余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。怎么用利用n维向量的计算公式我们知道二维余弦计算公式为:拓展至n维应用实例【下面举一个例子,来说明余弦计算文本相似度】举一个例子来说明,用上述理论计算文本的相似性。为了简单起见,先从句子着手。句子A:
- Python使用余弦相似度比较两个图片
Dxy1239310216
图像处理Pythonpython开发语言图像处理
为了使用余弦相似度来找到与样例图片相似的图片,我们需要先进行一些预处理,然后计算每两张图片之间的余弦相似度。以下是一个简单的实现:读取样例图片和目标文件夹中的所有图片。对每张图片进行预处理,例如灰度化、降噪等。计算每张图片与样例图片的余弦相似度。找到与样例图片最相似的图片并复制到指定目录。首先,确保你已经安装了必要的库:pipinstallopencv-pythonnumpyPillowsciki
- 大模型系列:OpenAI使用技巧_自定义文本向量化embeding
愤斗的橘子
#OpenAI数据挖掘语言模型
文章目录0.Imports1.输入2.加载和处理输入数据3.将数据分成训练和测试集4.生成合成的负样本5.计算嵌入和余弦相似度6.绘制余弦相似度的分布图7.使用提供的训练数据优化矩阵。8.绘制训练期间找到的最佳矩阵的前后对比图,展示结果本笔记本演示了一种将OpenAI嵌入定制为特定任务的方法。输入是以[text_1,text_2,label]形式的训练数据,其中label为+1表示这些句子对相似,
- 五种常用距离的代码实现:欧式距离、曼哈顿距离、闵可夫斯基距离、余弦相似度、杰卡德距离
阿_旭
算法与数据结构向量距离计算
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文