- Codeforces Round 969 (Div. 2) C. Dora and C++ (裴蜀定理)
致碑前繁花
刷题记录c语言c++开发语言
什么?竟然是裴蜀定理。。。由于这里给出了a和b两个数,我们或许可以想到使用同样是需要给出两个定值的裴蜀定理,即:如果给定xxx和yyy,那么一定有ax+by=gcd(x,y)ax+by=gcd(x,y)ax+by=gcd(x,y)。所以在这时候我们就可以让输入的所有数都去对gcd(a,b)gcd(a,b)gcd(a,b)取模,这样就能够得到所有数的最简形式(可以当成是让所有数尽可能消去aaa和bb
- 偏偏是个煽情雨季
TX故事
从小到大,没经历过什么大起大落,一切都被安排得妥当。遇见深邃的人,继而平平淡淡,幼稚地为了和某人一样,近了视,继而迷迷糊糊。今天人手一部手机,就算戴好眼镜瞪大眼睛,各种原则定理还是听不下去,究竟美好的东西会不会反噬我?想写写文看看字,画好蓝图,离开条条框框,摆脱“不值得定律”里的一人一物,可责任心也得保留住。这一秒钟,注定只能放空,下雨天,操的心总是重一点,窗外雾气重,路面滑,各个人健康与安全都重
- (凸集)表示定理
流星落黑光
表示定理设为非空多面集,则有:(1)极点集非空,且存在有限个极点(2)极方向集合为空集的充要条件是S有界,若S无界,则存在有限个极方向(3)的充要条件是:证明略。解释:*1:对一个有限多面体的表面,并不需要极方向(极方向只存在与无限情况!),显然任意一个表面上的点都在某个平面上,可由这个平面的端点(即有限个极点)表示。对一个无限多面体表面,若一个点在一个无限大的面上,这个无限大的面也可由有限条线段
- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 学习二十大报告精神,做新时代青年。
梁亮亮
党的二十大是在全党全国各族人民全面建成社会主义现代化国家新征程、进入第二个百年奋斗目标的关键时刻召开的一次重要会议,对于党和国家发展史来说具有重要里程碑意义。青年强则国家强,作为新时代的青年,我们要坚定不移听党话跟党走,立志做有理想、敢担当、能吃苦、能奋斗的新时代好青年,就是要牢记“四个意识”、坚定理想信念。“总开关”上不怕下尖子,“总闸门”上不留空间;一个人能成长为一名合格建设者,其实就是站在共
- 【C语言】素数的判断方法----多方法详细分析
gugugu.
C/C++开发语言c语言开发语言
前言素数的判断方法是我们在写程序的过程中经常碰到的问题,今天给大家带来素数的一些判断方法。一、什么是素数?质数(primenumber)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中
- 【04】深度学习——训练的常见问题 | 过拟合欠拟合应对策略 | 过拟合欠拟合示例 | 正则化 | Dropout方法 | Dropout的代码实现 | 梯度消失和爆炸 | 模型文件的读写
花落指尖❀
#深度学习深度学习人工智能目标检测神经网络cnn
深度学习1.常见的分类问题1.1模型架构设计1.2万能近似定理1.3宽度or深度1.4过拟合问题1.5欠拟合问题1.6相互关系2.过拟合欠拟合应对策略2.1问题的本源2.2数据集大小的选择2.3数据增广2.4使用验证集2.5模型选择2.6K折交叉验证2.7提前终止3.过拟合欠拟合示例3.1导入库3.2数据生成3.3数据划分3.4模型定义3.5辅助函数3.6可视化4.正则化4.1深度学习中的正则化4
- 金融三定理
学生行之
Timevalueofmoney资金的聚集风险——保险:让社会分担分散个体的风险风险——股票:让更多人“利益共享,风险共担”风险——风投、创投:让社会分担创业创新风险明白:a时间的价值是切切实实可以看的到!b银行低利率吸收存款,国家发行债券,做基础建设c个人幼年,青年,壮年,老年如何配置资产抵御不同时期的风险!
- 赏析微课堂之达达主义(一)
鼎典美育卷卷老师
鼎典理念:让孩子拥有发现美和独立思考的品质。图片发自App2018.12.25今日赏析微课堂分享~达达艺术1916~1924年在欧美许多城市兴起的一种虚无主义艺术运动。是战后欧洲一些年轻的艺术家厌倦战争、彷徨、失望以及在艺术上否定理性和传统文化、崇拜虚无主义的精神产物。其创作方法主要通过照片剪接或与纸片、抹布拼贴,去追求艺术表现的偶然性。作品怪诞奇特,令人惊惑不解。法国画家马塞尔·杜尚是达达主义的
- 2021-10-03
心心向善
南无羌佛《世法哲言》浅释(二十四)慧海之库与物质之仓是为反量也,慧库无为转无量,多用之反增之。物仓储存乃无常,施之减之,故无为乃大,大在无量,无常乃微,微在消然。如果把人的智慧聪明的储藏境比做一个仓库的话,那么它与储存物质的仓库恰是相对的反量。智慧聪明的仓库属於无为转无量,即以无为的定理转无量的境界,所起的作用的是越用就越多,也就是说,一个人的才智聪明,是越用越聪明,越锻炼反应力就越快,越进步、聪
- 4.3万字详解PHP+RabbitMQ(AMQP协议、通讯架构、6大模式、交换机队列消息持久化、死信队列、延时队列、消息丢失、重复消费、消息应答、消息应答、发布确认、故障转移、不公平分发、优先级、等)
小松聊PHP进阶
laravelPHPphp架构服务器中间件后端laravelrabbitmq
理论(后半部分有实操详解)哲学思考易经思维:向各国人讲述一种动物叫乌龟,要学很久的各国语言,但是随手画一个乌龟,全世界的人都能看得懂。道家思维:努力没有用(指劳神费心的机械性重复、肢体受累、刻意行为),要用心(深度思考、去感悟、透过现象看本质)才有用。举例:类似中学做不出来的几何题的底层原理:不是不知道xx定理或公式(招式),而是不知道画辅助线的思路(内功)。总结:万事万物、用道家思维思考本质与规
- 着力建设一支德才兼备的高质量干部队伍
dc7bce189fd7
党章对加强党的执政能力建设提出了明确要求,党的执政能力的提高,党的建设的加强,关键在党的干部素质的提高上,也就是要有一支善于治国理政的高素质干部队伍。干部队伍的素质如何,对于保持党的先进性,提高党的执政能力,做好各项工作,具有决定性的意义。坚定理想信念,是好干部第一位的标准,以习近平新时代中国特色社会主义思想为指引,在思想认识上毫不动摇坚定道路、理论、制度、文化自信,在政治实践中一以贯之拥护党的领
- 践行青春誓言 建功立业新时代
玉面狐狸在偷塔
入职半月以来,逐渐适应了乡镇基层的工作调性,结合专业所学谈谈我对选调生身份的几点体会。一是,“选”之于党,选调生意味着要信念坚定,对党忠诚。作为从万千考生中选拔出的年轻力量,选调生不能辜负党和人民的期望,要信念坚定、对党忠诚,时刻坚持用党的理论武装头脑、补足精神之钙。习近平总书记曾说:“年轻干部要牢记,坚定理想信念是终身课题,需要常修常炼,要信一辈子,守一辈子。”作为党选出来的青年力量中的一员,我
- 坚定理想信念,锤炼党性修养
知涵知
理想信念是中国共产党人的政治灵魂,是共产党人精神上的“钙”,没有理想信念,理想信念不坚定,精神上就会“缺钙”,就会得“软骨病”。党员干部只有坚定理想信念,强化责任担当,锤炼道德操守,提升党性修养,才能切实做到为党分忧、为国尽责、为民奉献。坚定理想信念,就要强化学习精神、自律精神、担当精神。思想理论上的坚定清醒是政治上坚定的前提,党员干部要始终把理论学习作为政治责任、事业需要和精神追求,积极参加组织
- (扩展)中国剩余定理(模板)
UniverseofHK
数学(扩展)中国剩余定理模板
中国剩余定理:猜数字求解下列同余方程组(模数互质){x≡a1(modm1)x≡a2(modm2)⋮x≡an(modmn)\begin{cases}x\equiva_1\(\mod\m_1\)\\x\equiva_2\(\mod\m_2\)\\\quad\vdots\\x\equiva_n\(\mod\m_n)\end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x≡a1(modm1)x≡a2(modm2)⋮
- 洛谷 P4777 【模板】扩展中国剩余定理(EXCRT)
qq_38232157
noi后缀数组扩展中国剩余定理
1、中国剩余定理(n条同余式子,前提是m[1]~m[n]两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])2、扩展中国剩余定理(n条同余式子,m[1]~m[n]不一定两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])考虑签名两条方程,x=r[1](modm[1]),x=r[1](modm[2])
- 洛谷 P1495 【模板】中国剩余定理(CRT)/曹冲养猪(中国剩余定理)
qq_38232157
洛谷数论
中国剩余定理概念:设m[1],m[2],m[3],…,m[[n]是两两互质的整数。方程组x=a[1](modm[1])//注意,这里的'='表示同余符号x=a[2](modm[2])...x=a[n](modm[n])方程的解x=sum{a[i]*(m/m[i])*t[i]}(1#include#includeusingnamespacestd;constintMaxN=1e5+10;typede
- HDU 1573X问题(扩展中国剩余定理)
数学收藏家
数据结构算法
ProblemDescription求在小于等于N的正整数中有多少个X满足:Xmoda[0]=b[0],Xmoda[1]=b[1],Xmoda[2]=b[2],…,Xmoda[i]=b[i],…(0usingnamespacestd;#defineintlonglong#defineendl'\n'#defineIOSios::sync_with_stdio(false);cin.tie(0);c
- 如何在Java中实现高效的分布式系统:从CAP定理到最终一致性
省赚客app开发者
java开发语言
如何在Java中实现高效的分布式系统:从CAP定理到最终一致性大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式系统,从CAP定理的基础概念到最终一致性的实现策略。一、CAP定理的基础概念CAP定理是分布式系统设计中的基本理论,它指出,在一个分布式系统中,无法同时完全满足一致性(Consistency)、可用性(Availa
- SAP项目管理第二章-方法论实践
syounger
SAP项目管理制造
《SAP项目管理基础与实践》书籍第二章来啦!本章主要是讨论项目管理方法论在实际项目中的实践经验,介绍了SAPActivate中非常有用的文档,并且也探讨了由格力高事件引申的项目质量管理。第二章目录:第2章专题一:SAP项目管理方法论和三角定理2.1项目管理方法论实践2.1.1SAPActivate项目管理方法论路线图2.1.2不同类型项目的方法论实践2.1.3敏捷在SAP项目中的应用2.2三角定理
- 《跳着踢踏舞去上班》书摘和点评
禅堂听雨
跳着踢踏舞去上班卡萝尔·卢米斯这是一本描写巴菲特经历和投资理念的书。有不少经典概念定理。07巴菲特的信(有好的资产也得熬得住,不要跳槽去别的快船,结果发现自己那条慢船突然加速成快艇了)>>格雷厄姆和巴菲特并非在所有问题上都保持一致,但他们共同的观念就是:如果以非常低的价格购进某种资产,假以时日,基本上都能获得回报。08你能跑赢股市吗(节选)(我个人觉得市场大多数时候有效,因为资金是最聪明的。但是乌
- 抽象代数精解【2】
叶绿先锋
基础数学与应用数学抽象代数人工智能
文章目录群消去律的意义消去律与群的其他性质总结难点与例子例子参考文献群下面由文心一言生成群中的消去律是群论中的一个基本定理,它描述了群中元素之间的一种特殊关系。具体来说,群中的消去律包含左右两个方向,可以表述为:左消去律:若(ab=ac)(ab=ac)(ab=ac)且(a,b,c∈G)(a,b,c\inG)(a,b,c∈G)其中(G)是一个群,则b=c。右消去律:若(ba=ca)(ba=ca)(b
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 青年干部筑牢理想信念根基
夕阳醉year
习近平总书记指出:“年轻干部接好班,最重要的是接好坚持马克思主义信仰、为共产主义远大理想和中国特色社会主义共同理想而奋斗的班。”“坚定理想信念不是一阵子而是一辈子的事,要常修常炼、常悟常进,无论顺境逆境都坚贞不渝,经得起大浪淘沙的考验。”习近平总书记的重要论述,深刻揭示了理想信念的极端重要性,精辟阐明了年轻干部成长为对党和人民忠诚可靠、堪当时代重任栋梁之才的努力方向和实践路径。坚持理论联系实际。列
- KAN网络技术最全解析——最热KAN能否干掉MLP和Transformer?(收录于GPT-4/ChatGPT技术与产业分析)
u013250861
#LLM/Transformertransformerchatgpt深度学习
KAN网络结构思路来自Kolmogorov-Arnold表示定理。MLP在节点(“神经元”)上具有固定的激活函数,而KAN在边(“权重”)上具有可学习的激活函数。在数据拟合和PDE求解中,较小的KAN可以比较大的MLP获得更好的准确性。相对MLP,KAN也具备更好的可解释性,适合作为数学和物理研究中的辅助模型,帮助发现和寻找更基础的数值规律。(点赞是我们分享的动力)MLP与KAN对比与传统的MLP
- Java 7.1 - 理论 & 算法 & 协议
没有韭菜的饺子
java开发语言
什么是CAP理论?C:Consistency一致性A:Availability可用性P:Partition分区容错性对于理论计算机科学,CAP定理指出,对于一个分布式系统而言,CAP中的三个只能同时满足两个。分区容错性:分布式系统出现网络分区的时候,仍然可以向外提供服务。*网络分区分布式系统中,多个节点之间的网络本来是相连的。但现在因为某些原因,某些节点之间不再连通,网络会被分成多个区域,这就叫网
- 心理学效应系列|取法乎上,得乎其中——吉格勒定理
熙桓心理
吉格勒定理是由美国行为学家J·吉格勒提出的。设定一个高目标就等于达到了目标的一部分。如果从一开始就怀有高远的目标,就会呈现出与众不同的眼界,逐渐形成良好的工作习惯和方法,让每一步都朝着正确的方向前进。气魄大方可成大,起点高才能至高。美国伯利恒钢铁公司的创建者齐瓦勃出生在乡村,所受的教育水平也很低。18岁那年,齐瓦勃到钢铁大王卡内基所属的一个建筑工地打工。一踏进建筑工地,齐瓦勃就抱定了要做同事中最优
- 什么是奈奎斯特采样定理
达西西66
奈奎斯特采样定理
奈奎斯特采样定理,也被称为奈奎斯特定理或奈氏定理,是信号处理领域中至关重要的原理之一。它揭示了在数字信号处理中如何正确地采样模拟信号,以避免信息丢失和混叠现象。本文将深入探讨奈奎斯特采样定理的原理、应用和实例,以及其在通信、音频处理和图像处理等领域的重要性。奈奎斯特采样定理的基本原理奈奎斯特采样定理是由美国工程师哈里·S·奈奎斯特(HarryNyquist)在20世纪20年代提出的。该定理的核心思
- 人工智能与机器学习原理精解【17】
叶绿先锋
基础数学与应用数学人工智能机器学习概率论
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C