求模乘法逆元


1.当gcd(a, b) = 1, 求(1/a)%b的值,相当求于 a*x = 1 (mod b),等价于

(1) 1%b = (1 - y*b ) % b  =(a * x )%b  = 1,所以ax =1 - by,即ax + by = 1;


2.当gcd(a, b) != 1时,因为a%b == gcd(a, b) * ((a / gcd(a, b)) % (b / gcd(a, b)))


所以(1%b) !=(a*x) %b,  但是(1%b) ==((a*x) %b) /gcd(a, b)),所以

(gcd(a, b)%b) ==(a*x) % b) ax + by = gcd(a, b);


代码如下:

typedef long long LL ;
LL exgcd(LL a,LL b,LL &x,LL &y){
	if( b == 0 ) {
		x = 1;
		y = 0;
		return a;
	}
	else{
		LL x1,y1;
		LL d = exgcd ( b , a % b , x1 , y1 );
		x = y1;
		y= x1 - a / b * y1;
		return d;
	}
}


实列:poj1061

#include<iostream>
using namespace std;
typedef __int64 LL ;
LL exgcd(LL a,LL b,LL &x,LL &y){
	if( b == 0 ) {
		x = 1;
		y = 0;
		return a;
	}
	else{
		LL x1,y1;
		LL d = exgcd ( b , a % b , x1 , y1 );
		x = y1;
		y= x1 - a / b * y1;
		return d;
	}
}
int main() {
	LL x , y , m , n , l ;
	scanf("%I64d%I64d%I64d%I64d%I64d" , & x , & y , & m , & n , & l );
	LL mn , r ;
	mn = m - n ;
	r = y - x ;
	if ( mn < 0 ) mn = - mn , r = -r ;
	LL rmn , rl ;//reverse 逆元
	LL d = exgcd ( mn , l , rmn , rl ) ;// d = gcd( mn , l )
	if ( r % d != 0 ) cout<<"Impossible";
	else{
		rmn *= ( r / d ) ;
		__int64 T = l / d ;
		printf( "%I64d" , ( rmn % T + T ) % T ) ;
	}
	return 0;
}



你可能感兴趣的:(求模乘法逆元)