poj1637

Sightseeing tour
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 7945   Accepted: 3327

Description

The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is visited exactly once. The bus should also start and end at the same junction. As in any city, the streets are either one-way or two-way, traffic rules that must be obeyed by the tour bus. Help the executive board and determine if it's possible to construct a sightseeing tour under these constraints.

Input

On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two positive integers m and s, 1 <= m <= 200,1 <= s <= 1000 being the number of junctions and streets, respectively. The following s lines contain the streets. Each street is described with three integers, xi, yi, and di, 1 <= xi,yi <= m, 0 <= di <= 1, where xi and yi are the junctions connected by a street. If di=1, then the street is a one-way street (going from xi to yi), otherwise it's a two-way street. You may assume that there exists a junction from where all other junctions can be reached.

Output

For each scenario, output one line containing the text "possible" or "impossible", whether or not it's possible to construct a sightseeing tour.

Sample Input

4
5 8
2 1 0
1 3 0
4 1 1
1 5 0
5 4 1
3 4 0
4 2 1
2 2 0
4 4
1 2 1
2 3 0
3 4 0
1 4 1
3 3
1 2 0
2 3 0
3 2 0
3 4
1 2 0
2 3 1
1 2 0
3 2 0

Sample Output

possible
impossible
impossible
possible

此题就是求混合图是否存在欧拉回路。大家都知道存在欧拉回路的充分必要条件是每个顶点的入度=出度。

此题有个麻烦之处是存在无向边,而无向边也只能经过一次,那么问题来了,到底是从u->v呢还是v->u。

我们单独考虑这个有什么区别?

假设算作:u->v,此时u的入度为indeg,出度为outdeg

如果算作v->u,而其他边不变,那么u的入度为indeg+1,出度为outdeg-1

这样一搞就可以发现入度-出度的差变化为2,所以现在任意取一个方向每个点入度-出度的差与正确的取法(存在欧拉回路)入度-出度的差  相差2k(k为整数),而正确取法每个点入度-出度=0,因此任意取法,每个点入度-出度为偶数,因此可以利用此条件判断不能存在欧拉回路的情况,就是只要有一个点入度-出度为奇数,则无解。

对于有解情况,这里有一种很巧妙的方法,对于那些本来就是有向边的边,因为无法变化,因此我们不需要这些边,对于无向边我们任取一个方向构图,边权为1,此时每个点入度-出度均为偶数,我们如何反转某些边来使得每个点入度-出度均为0呢?

我们加两个点超级源点和超级汇点,对原图中入度>出度的边,我们将这些点连向汇点,边权为该点(入度-出度)/2,而对原图中入度<出度的边,我们将源点连向这些点,边权为(出度-入度)/2。然后跑一边dinic,如果存在满流的情况,就说明有解。

这是为什么呢?

我们这样想对于和源点相连的点,他们流入(出度-入度)/2,由于他们流出都为1,因此必有(出度-入度)/2个流出点,对应这(出度-入度)/2条边,我们如果将其反转的话,这些点的入度和出度就刚好相等了。

同理和汇点相连的点,必有(入度-出度)/2条边流入这些点,同理反转入度等于出度。

而对于那些不和源点也不和汇点相连接的点,则必有入度=出度,而在网络流算法中,这些点满足流守恒条件,因此跑完dinic后,入度还是等于出度,这样也就是构造了一个欧拉回路出来。

神奇吧!网络流还可以这么玩。。。

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#define Maxn 210
using namespace std;

int indeg[Maxn],outdeg[Maxn];
const int inf=0x3f3f3f3f;
struct line{
    int to,next,cap;
}p[Maxn*Maxn];
int head[Maxn];
int q[Maxn];
int d[Maxn];
int tot;
int src,t;
int n,m;
void addedge(int a,int b,int c){
    p[tot].to=b;
    p[tot].next=head[a];
    p[tot].cap=c;
    head[a]=tot++;
}
void insert(int a,int b,int c){
    addedge(a,b,c);
    addedge(b,a,0);
}
bool bfs(){
    memset(d,-1,sizeof d);
    int s=0,e=-1;
    q[++e]=src;
    d[src]=0;
    while(s<=e){
        int u=q[s++];
        for(int i=head[u];i!=-1;i=p[i].next){
            int v=p[i].to;
            if(d[v]==-1&&p[i].cap){
                d[v]=d[u]+1;
                q[++e]=v;
            }
        }
    }
    return d[t]!=-1;
}
int dfs(int u,int alpha){
    if(u==t) return alpha;
    int w,used=0;
    for(int i=head[u];i!=-1&&used<alpha;i=p[i].next){
        int v=p[i].to;
        if(p[i].cap&&d[v]==d[u]+1){
            w=dfs(v,min(alpha-used,p[i].cap));
            used+=w;
            p[i].cap-=w;
            p[i^1].cap+=w;
        }
    }
    if(!used) d[u]=-1;
    return used;
}
int dinic(){
    int ans=0;
    src=0,t=n+1;
    while(bfs())
        ans+=dfs(src,inf);
    return ans;
}
int main()
{
    int cas,a,b,c;
    cin>>cas;
    while(cas--){
        cin>>n>>m;
        tot=0;
        memset(indeg,0,sizeof indeg);
        memset(outdeg,0,sizeof outdeg);
        memset(head,-1,sizeof head);
        for(int i=0;i<m;i++){
            scanf("%d%d%d",&a,&b,&c);
            outdeg[a]++;
            indeg[b]++;
            if(c==0) insert(a,b,1);
        }
        bool flag=true;
        int res=0;
        for(int i=1;i<=n;i++){
            if((indeg[i]-outdeg[i])&1){
                flag=false;
                break;
            }
            if(indeg[i]>outdeg[i])
                insert(i,n+1,indeg[i]-outdeg[i]>>1);
            else if(indeg[i]<outdeg[i]){
                insert(0,i,outdeg[i]-indeg[i]>>1);
                res+=outdeg[i]-indeg[i]>>1;
            }
        }
        if(!flag){
            puts("impossible");
            continue;
        }
        if(res==dinic()) puts("possible");
        else puts("impossible");
    }
	return 0;
}


你可能感兴趣的:(poj1637)