这道题目如果用暴力是过不了的,所以必须要优化。
对于k mod i,我们将其转换为k-i*[k/i]([a]表示不大于a的最大整数),那么:
ans=Σ(i=1,n) (k mod i)=Σ(i=1,n) (k-i*[k/i])=n*k-Σ(i=1,n) (i*[k/i])
我们发现,对于许多i(尤其是当i很大时),[k/i]的值都是相等的,事实上,如果设[k/i]=m,满足[k/i]=m的最小的i为u,那么满足条件的最大的i为v=[k/m]。简单的证明如下(写得不是很清楚,建议自己思考,可以无视):
由于[k/u]=[k/v]=m,而v又为最大值,故有m*v<=k m*(v+1)>k,即k/m-1<v<=k/m,因此v正是[k/m]的值。
由此,我们可以用等差数列求和来加速运算,对于所有相等的[k/i],可以很快地算出Σ(i=u,v) (i*[k/i])的值。由于k/i的值最多有sqrt(k)个,因此不会超时。代码中的i为上述的u,j为上述的v,详细的AC代码如下:
var n,k,i,j,ans:int64; begin readln(n,k); i:=int64(1); ans:=n*k; while i<=n do begin if k div i=0 then break; j:=k div (k div i); if j>n then j:=n; ans:=ans-(i+j)*(j-i+int64(1))*(k div i) div int64(2); i:=j+int64(1); end; writeln(ans); end.
2015.2.9
by lych