Given a string containing just the characters ‘(’ and ‘)’, find the length of the longest valid (well-formed) parentheses substring.
For “(()”, the longest valid parentheses substring is “()”, which has length = 2.
Another example is “)()())”, where the longest valid parentheses substring is “()()”, which has length = 4.
public class Solution {
public int longestValidParentheses(String s) {
if(s == null || s.length() == 0)
return 0;
StringBuilder temp = new StringBuilder(s);
ArrayDeque<Integer> stack = new ArrayDeque<>();
for(int i = 0; i < s.length(); i++){
if(s.charAt(i) == '(')
stack.push(i);
else if(!stack.isEmpty()){
//注意
temp.setCharAt(stack.pop(), '*');
temp.setCharAt(i, '*');
}
}
int longest = 0, part = 0;
for(int i = 0; i < temp.length(); i++){
if(temp.charAt(i) == '*'){
part++;
}else {
longest = Math.max(longest, part);
part = 0;
}
}
//注意
longest = Math.max(longest, part);
return longest;
}
}
DP
public class Solution {
/** * 1. 状态: DP[i]:以s[i-1]为结尾的longest valid parentheses substring的长度。 2. 通项公式: s[i-1] = '(': DP[i] = 0 s[i-1] = ')':找i前一个字符的最长括号串DP[i]的前一个字符j = i-2-DP[i-1] DP[i] = DP[i-1] + 2 + DP[j],如果j >=0,且s[j] = '(' DP[i] = 0,如果j<0,或s[j] = ')' */
public int longestValidParentheses(String s) {
if(s == null || s.length() == 0 || s.length() == 1)
return 0;
int len = s.length();
int[] dp = new int[len+1];
Arrays.fill(dp, 0);
int maxLen = 0;
for(int i = 1; i < dp.length; i++){
int j = i-2-dp[i-1];
if(s.charAt(i-1) == '(' || j < 0 || s.charAt(j) == ')')
dp[i] = 0;
else {
dp[i] = dp[i-1]+2+dp[j];
maxLen = Math.max(dp[i], maxLen);
}
}
return maxLen;
}
}